24 using std::cout;
using std::endl;
26 #include "system_constants.hpp" 29 #include "monomial.hpp" 30 #include "polynomial.hpp" 32 #include "dynamic_engine.hpp" 34 #include "algorithm_buchberger_basic.hpp" 35 #include "algorithm_buchberger_dynamic.hpp" 37 int main(
int argc,
char *argv[]) {
38 if (argc != 3 or (strcmp(argv[2],
"stat") and strcmp(argv[2],
"dyn"))) {
39 cout <<
"need to know method (usually 2) and then if dynamic (stat or dyn)\n";
44 bool static_algorithm =
true;
45 if (!strcmp(argv[2],
"dyn")) static_algorithm =
false;
48 string X [9] = {
"t",
"x",
"y",
"z",
"a",
"b",
"c",
"d",
"e"} ;
53 Monomial t11 { 0, 32, 0, 32, 0, 0, 0, 0, 0 };
54 Monomial t12 { 0, 0, 82, 0, 1, 0, 0, 0, 0 };
60 Monomial t21 { 0, 45, 0, 0, 0, 0, 0, 0, 0 };
61 Monomial t22 { 0, 0, 13, 21, 0, 1, 0, 0, 0 };
67 Monomial t31 { 0, 41, 0, 0, 0, 0, 1, 0, 0 };
68 Monomial t32 { 0, 0, 33, 12, 0, 0, 0, 0, 0 };
74 Monomial t41 { 0, 22, 0, 0, 0, 0, 0, 0, 0 };
75 Monomial t42 { 0, 0, 33, 12, 0, 0, 0, 1, 0 };
81 Monomial t51 { 0, 5, 17, 22, 0, 0, 0, 0, 1 };
82 Monomial t52 { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
88 Monomial t61 { 1, 1, 1, 1, 0, 0, 0, 0, 0 };
89 Monomial t62 { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
95 cout <<
"Computing a Groebner basis for\n\t" << f1
103 list<Abstract_Polynomial *> F;
104 F.push_back(&f1); F.push_back(&f2); F.push_back(&f3);
105 F.push_back(&f4); F.push_back(&f5); F.push_back(&f6);
107 list<Constant_Polynomial *> G;
108 if (static_algorithm) G =
buchberger(F, method, StrategyFlags::SUGAR_STRATEGY);
110 F, method, StrategyFlags::SUGAR_STRATEGY,
nullptr,
111 DynamicHeuristic::ORD_HILBERT_THEN_DEG, SKELETON_SOLVER,
false 116 g->leading_monomial().print(
true, cout, R.name_list());
A Constant_Polynomial is a polynomial that should not change.
list< Constant_Polynomial * > buchberger(const list< Abstract_Polynomial *> &F, SPolyCreationFlags method, StrategyFlags strategy, WT_TYPE *strategy_weights)
Implementation of Buchberger’s algorithm.
Information necessary for a field modulo a prime.
Prime_Field_Element unity()
“unity” is the multiplicative identity.
SPolyCreationFlags
flag indicating which structure to use for an s-polynomial
Implementation of monomials.
Element of a field of prime characteristic.
Encapsulates information about a polynomial ring for easy access: ground field, number of indetermina...
list< Constant_Polynomial * > buchberger_dynamic(const list< Abstract_Polynomial *> &F, SPolyCreationFlags method, StrategyFlags strategy, WT_TYPE *strategy_weights, DynamicHeuristic heuristic, DynamicSolver solver_type, bool analyze_inputs)
implementation of the dynamic Buchberger algorithm