Gröbner basis project
Codebase for research into Gröbner basis computation
test_cab_es9.cpp

This illustrates how to compute a Gröbner basis of the second example in [4],

\[ 32002 x^2 y z^4 + t ,\\ 32002 x^5 y^7 + u z^2 ,\\ v x^3 z + 32002 y^2 ,\\ w z^5 + 32002 x y^3 \]

/*****************************************************************************\
* This file is part of DynGB. *
* *
* DynGB is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 2 of the License, or *
* (at your option) any later version. *
* *
* Foobar is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with DynGB. If not, see <http://www.gnu.org/licenses/>. *
\*****************************************************************************/
#include <set>
#include <cstdlib>
#include <cstring>
#include <iostream>
using std::set;
using std::cout; using std::endl;
#include "system_constants.hpp"
#include "fields.hpp"
#include "monomial.hpp"
#include "polynomial.hpp"
#include "dynamic_engine.hpp"
#include "algorithm_buchberger_basic.hpp"
#include "algorithm_buchberger_dynamic.hpp"
int main(int argc, char *argv[]) {
if (argc != 3 or (strcmp(argv[2],"stat") and strcmp(argv[2],"dyn"))) {
cout << "need to know method (usually 2) and then if dynamic (stat or dyn)\n";
return 1;
}
// obtain method -- don't screw it up b/c we don't check it
SPolyCreationFlags method = (SPolyCreationFlags )atoi(argv[1]);
bool static_algorithm = true;
if (!strcmp(argv[2],"dyn")) static_algorithm = false;
// set up the field
Prime_Field FF = Prime_Field(32003);
string X [9] = { "t", "u", "v", "w", "x", "y", "z" } ;
Polynomial_Ring R(7, FF, X );
Monomial one { 0, 0, 0, 0, 0, 0, 0 };
// set up our polynomials
// first poly
Monomial x2y1z4 { 0, 0, 0, 0, 2, 1, 4 };
Monomial t1 { 1, 0, 0, 0, 0, 0, 0 };
Monomial M1 [] { x2y1z4, t1 };
Prime_Field_Element C1 [] { -a, a };
Constant_Polynomial f1(2, R, M1, C1);
// second poly
Monomial x5y7 { 0, 0, 0, 0, 5, 7, 0 };
Monomial u1z2 { 0, 1, 0, 0, 0, 0, 2 };
Monomial M2 [] { x5y7, u1z2 };
Prime_Field_Element C2 [] { -a, a };
Constant_Polynomial f2(2, R, M2, C2);
// third poly
Monomial v1x3z1 { 0, 0, 1, 0, 3, 0, 1 };
Monomial y2 { 0, 0, 0, 0, 0, 2, 0 };
Monomial M3 [] { v1x3z1, y2 };
Prime_Field_Element C3 [] { a, -a };
Constant_Polynomial f3(2, R, M3, C3);
// fourth poly
Monomial w1z5 { 0, 0, 0, 1, 0, 0, 5 };
Monomial x1y3 { 0, 0, 0, 0, 1, 3, 0 };
Monomial M4 [] { w1z5, x1y3 };
Prime_Field_Element C4 [] { a, -a };
Constant_Polynomial f4(2, R, M4, C4);
// message
cout << "Computing a Groebner basis for\n\t" << f1
<< ",\n\t" << f2
<< ",\n\t" << f3
<< ",\n\t" << f4
<< endl;
// compute basis
list<Abstract_Polynomial *> F;
F.push_back(&f1); F.push_back(&f2); F.push_back(&f3);
F.push_back(&f4);
list<Constant_Polynomial *> G;
if (static_algorithm) G = buchberger(F, method, StrategyFlags::SUGAR_STRATEGY);
F, method, StrategyFlags::SUGAR_STRATEGY, nullptr,
DynamicHeuristic::ORD_HILBERT_THEN_DEG
);
cout << "Basis:\n";
for (Constant_Polynomial * g : G) {
cout << '\t';
g->leading_monomial().print(true, cout, R.name_list());
delete g;
}
cout << "bye\n";
}