Gröbner basis project
Codebase for research into Gröbner basis computation
Mutable_Polynomial Member List

This is the complete list of members for Mutable_Polynomial, including all inherited members.

Abstract_Polynomial(Polynomial_Ring &ring, Monomial_Ordering *ordering)Abstract_Polynomialinline
add_last(const Prime_Field_Element &, const Monomial &)=0Mutable_Polynomialpure virtual
add_polynomial_multiple(const Prime_Field_Element &, const Monomial &, const Abstract_Polynomial &, bool subtract=false)=0Mutable_Polynomialpure virtual
base_ring() constAbstract_Polynomial
begin() const =0 (defined in Abstract_Polynomial)Abstract_Polynomialpure virtual
can_reduce(Abstract_Polynomial &other) constAbstract_Polynomialvirtual
detach_head()=0Mutable_Polynomialpure virtual
end() const =0 (defined in Abstract_Polynomial)Abstract_Polynomialpure virtual
ground_field()Abstract_Polynomial
is_zero() const =0Abstract_Polynomialpure virtual
leading_coefficient() const =0Abstract_Polynomialpure virtual
leading_monomial() const =0Abstract_Polynomialpure virtual
length() const =0Abstract_Polynomialpure virtual
monomial_multiple(const Monomial &) const =0Mutable_Polynomialpure virtual
monomial_ordering() constAbstract_Polynomialinline
multiply_by_monomial(const Monomial &t)Mutable_Polynomialvirtual
multiply_by_scalar(const Prime_Field_Element &a)Mutable_Polynomialvirtual
Mutable_Polynomial(Polynomial_Ring &R, Monomial_Ordering *ordering=generic_grevlex_ptr)Mutable_Polynomialinline
new_iterator() const =0Abstract_Polynomialpure virtual
new_mutable_iterator()=0Mutable_Polynomialpure virtual
number_of_variables() constAbstract_Polynomial
operator+=(const Abstract_Polynomial &)=0Mutable_Polynomialpure virtual
operator-=(const Abstract_Polynomial &)=0Mutable_Polynomialpure virtual
print(ostream &os=cout) const (defined in Abstract_Polynomial)Abstract_Polynomialvirtual
println(ostream &os=cout) const (defined in Abstract_Polynomial)Abstract_Polynomialvirtual
printlncout() const (defined in Abstract_Polynomial)Abstract_Polynomialinlinevirtual
RAbstract_Polynomialprotected
reduce_by(const Abstract_Polynomial &p)Mutable_Polynomialvirtual
scalar_multiple(const Prime_Field_Element &) const =0Mutable_Polynomialpure virtual
set_monomial_ordering(Monomial_Ordering *order, bool sort_anew=true)=0Abstract_Polynomialpure virtual
set_strategy(Poly_Strategy_Data *psd)Abstract_Polynomial
sort_by_order()=0Abstract_Polynomialpure virtual
standard_degree() constAbstract_Polynomialvirtual
stratAbstract_Polynomialprotected
strategy() constAbstract_Polynomialinlinevirtual
weighted_degree(const WT_TYPE *w=nullptr) constAbstract_Polynomialvirtual
zero_polynomial() const =0Mutable_Polynomialpure virtual
~Abstract_Polynomial() (defined in Abstract_Polynomial)Abstract_Polynomialinlinevirtual
~Mutable_Polynomial()=0Mutable_Polynomialpure virtual