When can we skip S-polynomial reduction?

(3 polynomials)

Hoon Hong Jack Perry hong@ncsu.edu jeperry@ncsu.edu 8th September 2004

North Carolina State University

Partially supported by NSF 53344

When can we skip S-polynomial reduction? – p.1/16

Motivation

- Gröbner bases $\longrightarrow S$ -polynomial reductions to 0
- Reduction: computationally expensive
- So, we would like to skip whenever possible
- WHEN?

When can we skip *S*-polynomial reduction?

S-polynomials

Definition:

$$\mathbf{S}_{\succ}\left(f,g\right) = \frac{\operatorname{lcm}\left(\operatorname{lt}_{\succ}\left(f\right),\operatorname{lt}_{\succ}\left(g\right)\right)}{\operatorname{lm}_{\succ}\left(f\right)} \cdot f - \frac{\operatorname{lcm}\left(\operatorname{lt}_{\succ}\left(f\right),\operatorname{lt}_{\succ}\left(g\right)\right)}{\operatorname{lm}_{\succ}\left(g\right)} \cdot g$$

Reduction

"Get remainder"

Reduction

"Get remainder"

Reduction

"Get remainder"

$$g = h_1 f_1 + h_2 f_2 + h_3 f_3 + r$$

$$\downarrow$$

$$g \rightarrow^*_F r$$
where $F = (f_1, f_2, f_3)$

Question, restated

When can we skip *S*-polynomial reduction?

Buchberger, 1965
 gcd
$$\left(\widehat{f_1}, \widehat{f_3}\right) = 1 \implies \mathbf{S}_{13} \rightarrow^*_F 0$$
 (BC1)

- Buchberger, 1965 $gcd\left(\widehat{f_1}, \widehat{f_3}\right) = 1 \quad \Rightarrow \quad \mathbf{S}_{13} \rightarrow_F^* 0$
- Buchberger, 1979

 $\widehat{f_2} \mid \operatorname{lcm}\left(\widehat{f_1}, \widehat{f_3}\right)$ $\Rightarrow \quad \left[\mathbf{S}_{12} \rightarrow^*_F 0 \land \mathbf{S}_{23} \rightarrow^*_F 0 \Rightarrow \mathbf{S}_{13} \rightarrow^*_F 0\right]$

(BC1)

- Buchberger, 1965 $gcd\left(\widehat{f_1}, \widehat{f_3}\right) = 1 \quad \Rightarrow \quad \mathbf{S}_{13} \rightarrow_F^* 0$
- Buchberger, 1979

 $\widehat{f_2} \mid \operatorname{lcm}\left(\widehat{f_1}, \widehat{f_3}\right)$ $\Rightarrow \left[\mathbf{S}_{12} \rightarrow^*_F 0 \land \mathbf{S}_{23} \rightarrow^*_F 0 \Rightarrow \mathbf{S}_{13} \rightarrow^*_F 0\right]$

$$f_1 = x^2 y + x^2$$
 $f_3 = y^3 + y^2$

- Buchberger, 1965 $gcd\left(\widehat{f}_{1}, \widehat{f}_{3}\right) = 1 \quad \Rightarrow \quad \mathbf{S}_{13} \rightarrow_{F}^{*} 0$
- Buchberger, 1979
 \$\highfrac{f_2}{f_2} | \leftl{lcm}(\highfrac{f_1}{f_1}, \highfrac{f_3}{f_3})\$
 \$\leftl{S}_{12} \rightarrow_F^* 0 \leftle \mathbf{S}_{23} \rightarrow_F^* 0 \Rightarrow \mathbf{S}_{13} \rightarrow_F^* 0\$

$$f_1 = x^2 y + x^2$$
 $f_3 = y^3 + y^2$

- Buchberger, 1965 $gcd\left(\widehat{f_1}, \widehat{f_3}\right) = 1 \quad \Rightarrow \quad \mathbf{S}_{13} \rightarrow_F^* 0$
- Buchberger, 1979 $\widehat{f_2} \mid \operatorname{lcm}\left(\widehat{f_1}, \widehat{f_3}\right)
 \Rightarrow \quad \left[\mathbf{S}_{12} \rightarrow^*_F 0 \land \mathbf{S}_{23} \rightarrow^*_F 0 \Rightarrow \mathbf{S}_{13} \rightarrow^*_F 0\right]$

$$f_1=x^2y{+}x^2$$
 $f_3=y^3{+}y^2$
• $f_2=xy^2{+}xy$

Are there other cases on leading terms?

Question

Are there other cases on leading terms?

Question

Are there other cases on leading terms?

Question

Are there other cases on leading terms?

Want
$$CC(t_1, t_2, t_3) \Leftrightarrow Can skip S_{13}$$

Note:

- (BC1) \Rightarrow Can skip \mathbf{S}_{13}
- **9** (BC2) \Rightarrow Can skip \mathbf{S}_{13}

Theorem (2004)

Theorem (2004)

where

$\mathbf{CC1}(t_1, t_2, t_3) \quad \Leftrightarrow \quad \mathbf{gcd}(t_1, t_3) \mid t_2 \quad \text{or} \quad t_2 \mid \mathbf{lcm}(t_1, t_3)$

When can we skip S-polynomial reduction? - p.8/16

Theorem (2004)

where

$\mathbf{CC1}(t_1, t_2, t_3) \quad \Leftrightarrow \quad \mathbf{gcd}(t_1, t_3) \mid t_2 \quad \text{or} \quad t_2 \mid \mathbf{lcm}(t_1, t_3)$

 $CC2(t_1, t_2, t_3) \Leftrightarrow variable-wise: BC1 or BC2$

When can we skip S-polynomial reduction? – p.8/16

● (BC1) or (BC2) \Leftarrow Can skip S_{13}

- (BC1) or (BC2) \Leftarrow Can skip S_{13}
- Gebauer and Möller (1988) and Caboara, Kreuzer and Robbiano (2002) apply (BC1), (BC2) repeatedly to obtain minimal generating set for syzygy

- (BC1) or (BC2) \Leftarrow Can skip S_{13}
- Gebauer and Möller (1988) and Caboara, Kreuzer and Robbiano (2002) apply (BC1), (BC2) repeatedly to obtain minimal generating set for syzygy
- Finding minimal generating set for syzygy is not good enough

$$\widehat{f}_{1} = x^{2}y \qquad \widehat{f}_{2} = xy^{2} \qquad \widehat{f}_{3} = xz$$
$$\mathbf{S}_{12} \leftrightarrow \begin{pmatrix} y \\ -x^{2} \\ 0 \end{pmatrix} \qquad \mathbf{S}_{23} \leftrightarrow \begin{pmatrix} 0 \\ z \\ -y^{2} \end{pmatrix} \qquad \mathbf{S}_{13} \leftrightarrow \begin{pmatrix} z \\ 0 \\ xy \end{pmatrix}$$

When can we skip S-polynomial reduction? - p.10/16

(BC1) or (BC2) \Leftarrow Can skip S_{13}

 $\widehat{}$

- Gebauer and Möller (1988) and Caboara, Kreuzer and Robbiano (2002) apply (BC1), (BC2) repeatedly to obtain minimal generating set for syzygy
- Finding minimal generating set for syzygy is not good enough

 $\widehat{}$

$$f_{1} = x^{2}y \qquad f_{2} = xy^{2} \qquad f_{3} = xz$$
$$\mathbf{S}_{12} \leftrightarrow \begin{pmatrix} y \\ -x^{2} \\ 0 \end{pmatrix} \qquad \mathbf{S}_{23} \leftrightarrow \begin{pmatrix} 0 \\ z \\ -y^{2} \end{pmatrix} \qquad \mathbf{S}_{13} \leftrightarrow \begin{pmatrix} z \\ 0 \\ xy \end{pmatrix}$$

We truly found new cases

Contrapositive: $\neg CC \Rightarrow \neg Can \text{ skip } S_{13}$

Contrapositive: $\neg CC \Rightarrow \neg Can \text{ skip } S_{13}$

Assume $\neg CC: \neg CC1$ or $\neg CC2$

Contrapositive: $\neg CC \Rightarrow \neg Can \text{ skip } S_{13}$

Assume $\neg CC: \neg CC1$ or $\neg CC2$

¬CC1:

$$f_1 = t_1 + \mathbf{gcd}(t_1, t_2)$$
 $f_2 = t_2$ $f_3 = t_3$

Contrapositive: $\neg CC \Rightarrow \neg Can \text{ skip } S_{13}$

Assume \neg CC: \neg CC1 or \neg CC2

¬CC2:

$$f_1 = t_1 + u$$
 $f_2 = t_2$ $f_3 = t_3$

where

$$\forall x \quad \deg_x \mathbf{u} = \begin{cases} \deg_x t_3 & x \neq y \\ \max\left(0, \deg_x \frac{t_1 t_3}{t_2}\right) & x = y \end{cases}$$

where $\deg_y t_2 > \deg_y \operatorname{lcm}(t_1, t_3)$

$$\mathbf{S}_{\succ} (f_1, f_2) \rightarrow^*_F 0$$

and
$$\mathbf{S}_{\succ} (f_2, f_3) \rightarrow^*_F 0$$

$$\mathbf{S}_{\succ}(f_1, f_3) \rightarrow^*_F 0$$

When can we skip S-polynomial reduction? – p.12/16

$$\mathbf{S}_{\succ} (f_1, f_2) \rightarrow^*_F 0$$

and
$$\mathbf{S}_{\succ} (f_2, f_3) \rightarrow^*_F 0$$

 \Downarrow

$$\mathbf{S}_{\succ}(f_1, f_3) \rightarrow^*_F 0$$

When can we skip S-polynomial reduction? – p.12/16

Recall:Can skip
$$S_{13}$$
 \Leftrightarrow $\forall F \dots S_{13} \rightarrow_F^* 0$ Main Theorem:Can skip S_{13} \Leftrightarrow CC

Recall: Can skip
$$\mathbf{S}_{13} \Rightarrow \forall F \dots \mathbf{S}_{13} \rightarrow^*_F \mathbf{0}$$

Main Theorem: Can skip $S_{13} \Leftrightarrow CC$

Recall:
$$Can skip S_{13} \Leftrightarrow \forall F \dots S_{13} \rightarrow_F^* 0$$
Main Theorem: $Can skip S_{13} \Leftrightarrow CC$ Recall counterexamples: CC $\Leftrightarrow F = (t_1 + u, t_2, t_3) \Rightarrow \dots S_{13} \rightarrow_F^* 0$ Thus: $\forall F \dots S_{13} \rightarrow_F^* 0 \Leftrightarrow F = (t_1 + u, t_2, t_3) \Rightarrow \dots S_{13} \rightarrow_F^* 0$

When can we skip S-polynomial reduction? – p.13/16

Recall:
$$Can skip S_{13} \Leftrightarrow \forall F \dots S_{13} \rightarrow_F^* 0$$
Main Theorem: $Can skip S_{13} \Leftrightarrow CC$ Recall counterexamples: CC $\Leftrightarrow F = (t_1 + u, t_2, t_3) \Rightarrow \dots S_{13} \rightarrow_F^* 0$ Thus: $\forall F \dots S_{13} \rightarrow_F^* 0 \Leftrightarrow F = (t_1 + u, t_2, t_3) \Rightarrow \dots S_{13} \rightarrow_F^* 0$

We have eliminated \forall !

Summary

"When can we skip *S*-polynomial reduction?"

- Complete answer for three polynomials
- Four polynomials: ...?

Thank you!

Example 1:

$$\widehat{f_1} = x^2 y$$
 $\widehat{f_2} = y^2$ $\widehat{f_3} = xz$

Can we skip S_{13} ?

Example 1:

$$\widehat{f}_1 = x^2 y$$
 $\widehat{f}_2 = y^2$ $\widehat{f}_3 = xz$

Can we skip S_{13} ?

No!
$$\gcd\left(\widehat{f_1}, \widehat{f_3}\right) \nmid \widehat{f_2} \text{ and } f_2 \nmid \operatorname{lcm}\left(\widehat{f_1}, \widehat{f_3}\right)$$

Example 1:

$$\widehat{f}_1 = x^2 y$$
 $\widehat{f}_2 = y^2$ $\widehat{f}_3 = xz$

Can we skip S_{13} ?

No!
$$\operatorname{gcd}\left(\widehat{f_1}, \widehat{f_3}\right) \nmid \widehat{f_2} \text{ and } f_2 \nmid \operatorname{lcm}\left(\widehat{f_1}, \widehat{f_3}\right)$$

Example 2:

$$\widehat{f}_1 = x^2 y$$
 $\widehat{f}_2 = x y^2$ $\widehat{f}_3 = x z$
Can we skip S₁₃?

Example 1:

$$\widehat{f}_1 = x^2 y$$
 $\widehat{f}_2 = y^2$ $\widehat{f}_3 = xz$

Can we skip S_{13} ?

No!
$$\operatorname{gcd}\left(\widehat{f_1}, \widehat{f_3}\right) \nmid \widehat{f_2} \text{ and } f_2 \nmid \operatorname{lcm}\left(\widehat{f_1}, \widehat{f_3}\right)$$

Example 2:

$$\widehat{f}_1 = x^2 y$$
 $\widehat{f}_2 = xy^2$ $\widehat{f}_3 = xz$
Can we skip S₁₃?
Yes!