

Criteria on leading terms for S**-polynomial** representations

John Edward Perry

North Carolina Wesleyan College

Partially funded by NSF 0097976

Question

Answer

- Analysis of answer
- Future direction

Question

Are Buchberger's criteria for S-polynomial representations the most general criteria *using leading terms alone?*

$$\mathbf{S}_{\succ}(f_i, f_j)$$
 has **representation**
 (h_1, \dots, h_m)
modulo $F = (f_1, \dots, f_m)$

\bigcirc

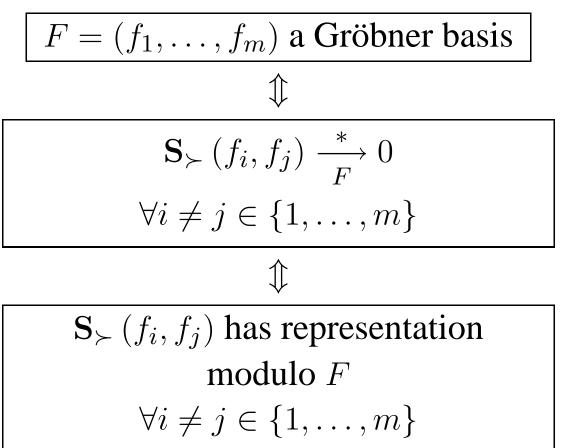
$$\mathbf{S}_{\succ} (f_i, f_j) = \mathbf{h}_1 f_1 + \dots + \mathbf{h}_m f_m$$

and
$$\mathbf{h}_k \neq 0 \text{ implies } \mathbf{lt}_{\succ} (\mathbf{h}_k f_k) \prec \mathbf{lcm} (\mathbf{lt}_{\succ} (f_i), \mathbf{lt}_{\succ} (f_j))$$

Notation: Rep $(\mathbf{S}_{\succ}(f_1, f_2); F)$

Representations intimately tied to GB!

Theorem:



Sometimes,

$$\implies \exists i, j \operatorname{\mathbf{Rep}}(\mathbf{S}_{\succ}(f_i, f_j); F)$$

$$\implies \exists i, j \text{ can skip } \mathbf{S}_{\succ}(f_i, f_j)$$

- 1965 Buchberger, B. (BCG)
- 1979 Buchberger, B. (BCL)
- 1988 Gebauer, R. and Möller, H. (Efficient BC)
- 2002 Caboara, M.; Kreuzer, M.; Robbiano, L. (BC in syzygy module)
- 2003 Faugère, J.C. (criterion on other terms, coefficients)

BCG: t_1 , t_3 rel. prime

BCL:
$$t_2$$
 divides lcm (t_1, t_3)

BCG
$$(t_1, t_3)$$

or
BCL (t_1, t_2, t_3)

 $t_k = \mathbf{lt}_{\succ} \left(f_k \right)$

Can skip
$$\mathbf{S}_{\succ}(f_1, f_3)$$

$$\mathbf{BCG} \Longrightarrow \mathbf{Rep}\left(\mathbf{S}_{\succ}\left(f_{1}, f_{3}\right); F\right)$$

$$\mathbf{BCL} \Longrightarrow \left\{ \begin{array}{l} \mathbf{Rep} \left(\mathbf{S}_{\succ} \left(f_{1}, f_{2} \right); F \right) \\ \mathbf{Rep} \left(\mathbf{S}_{\succ} \left(f_{2}, f_{3} \right); F \right) \end{array} \right\} \Rightarrow \mathbf{Rep} \left(\mathbf{S}_{\succ} \left(f_{1}, f_{3} \right); F \right)$$

$$\mathbf{S}_{\succ}(f_{1}, f_{3}) = \frac{\mathbf{lcm}(t_{1}, t_{3})}{\mathbf{lcm}(t_{1}, t_{2})} \cdot \mathbf{S}_{\succ}(f_{1}, f_{2}) + \frac{\mathbf{lcm}(t_{1}, t_{3})}{\mathbf{lcm}(t_{2}, t_{3})} \cdot \mathbf{S}_{\succ}(f_{2}, f_{3})$$

BC: criterion $C(t_1, t_2, t_3)$ on terms:

- for every (f_1, \ldots, f_m) with $\mathbf{lt}_{\succ}(f_k) = t_k$
- can skip $\mathbf{S}_{\succ}(f_1, f_3)$

...Are there other criteria on terms?

Are Buchberger's criteria for S-polynomial representations the most general criteria *using leading terms alone?*

Answer:

"Almost... but not quite"

BCL: $t_2 \mid \mathbf{lcm}(t_1, t_3)$

$$\left. \begin{array}{c} \operatorname{\mathbf{Rep}}\left(\mathbf{S}_{\succ}\left(f_{1},f_{2}\right);F\right) \\ \operatorname{\mathbf{Rep}}\left(\mathbf{S}_{\succ}\left(f_{2},f_{3}\right);F\right) \end{array} \right\} \quad \Longrightarrow \quad \operatorname{\mathbf{Rep}}\left(\mathbf{S}_{\succ}\left(f_{1},f_{3}\right);F\right) \end{array} \right\}$$

Chain $(t_1, \ldots, t_{\nu}; m)$ iff

$$\forall \succ \\ \forall F = (f_1, \dots, f_m) \text{ with } \operatorname{lt}_{\succ} f_1 = t_1, \dots, \operatorname{lt}_{\succ} f_{\nu} = t_{\nu} \\ \operatorname{Rep} \left(\mathbf{S}_{\succ} (f_1, f_2) ; F \right) \\ \operatorname{and} \\ \operatorname{Rep} \left(\mathbf{S}_{\succ} (f_2, f_3) ; F \right) \\ \operatorname{and} \\ \ldots \\ \operatorname{and} \\ \operatorname{Rep} \left(\mathbf{S}_{\succ} (f_{\nu-1}, f_{\nu}) ; F \right) \\ \end{array} \right\} \implies \operatorname{Rep} \left(\mathbf{S}_{\succ} (f_1, f_{\nu}) ; F \right) \\ (\nu \leq m)$$

Generality \iff Sufficiency AND Necessity

Know

$\begin{array}{c} \operatorname{BCG}(t_1, t_{\nu}) \\ \operatorname{or} \\ \operatorname{BCL}(t_1, t_i, t_{\nu}) \end{array} \end{array} \implies \operatorname{Chain}(t_1, \dots, t_{\nu}; m) \\ (\exists i \ 1 < i < m) \end{array}$

Generality \iff Sufficiency AND Necessity

But

 $\begin{array}{c} \operatorname{BCG}(t_1, t_{\nu}) \\ \operatorname{or} \\ \operatorname{BCL}(t_1, t_i, t_3) \end{array} \end{array} \xrightarrow{?!?} \operatorname{Chain}(t_1, \dots, t_{\nu}; m) \\ (\exists i \ 1 < i < m) \end{array}$

Theorem "Almost": For #lts < #polys

Buchberger criteria are **necessary** for Chain $(t_1 \dots t_{\nu}; m)$.

Theorem "Almost": For #lts < #polys

Buchberger criteria are **necessary** for Chain $(t_1 \dots t_{\nu}; m)$.

Sketch of proof:

•
$$F = (f_1, ..., f_m)$$
 where
 $f_1 = t_1 + 1,$
 $f_2 = t_2, ..., f_{\nu} = t_{\nu},$
 $f_{\nu+1} = ... = f_m = \mathbf{S}_{\succ} (f_1, f_2)$
• Chain $(t_1, ..., t_{\nu}; m) \implies \mathbf{BCG} \text{ or } \mathbf{BCL}!!!$

Conclusion: BC most general criterion for #lts < #polys

Theorem "But not quite": For #lts = #polys,

Buchberger criteria are **not** necessary for Chain $(t_1, \ldots, t_m; m)$.

Theorem "But not quite": For #lts = #polys,

Buchberger criteria are **not** necessary for Chain $(t_1, \ldots, t_m; m)$.

New criteria:

Chain
$$(t_1, \ldots, t_m; m)$$

$$\uparrow$$

$$t_1 = x_0 x_1 \quad t_2 = x_0 x_2 \quad \ldots \quad t_m = x_0 x_m$$

Theorem "But not quite": For #lts = #polys,

Buchberger criteria are **not** necessary for Chain $(t_1, \ldots, t_m; m)$.

New criteria:

Chain
$$(t_1, \ldots, t_m; m)$$

$$\uparrow$$

$$t_1 = x_0 x_1 \quad t_2 = x_0 x_2 \quad \ldots \quad t_m = x_0 x_m$$

$$t_1 = x_1^2$$
 $t_2 = \dots = t_{m-1} = x_1 x_2$... $t_m = x_1$

Conclusion: *More general criteria* for #lts < #polys

$$\begin{array}{c|c} t_{k} = x_{0}x_{k}: \\ \hline & \mathbf{S}_{\succ}\left(f_{i}, f_{i+1}\right) & \mathbf{S}_{\succ}\left(f_{1}, f_{m}\right) \\ \text{have representation} & \text{has representation} \\ & \downarrow & \uparrow \\ \hline & \mathbf{lt}_{\succ}\left(c_{1}\right), \dots, \mathbf{lt}_{\succ}\left(c_{m}\right) & \Rightarrow & \mathbf{S}_{\succ}\left(c_{1}, c_{m}\right) \\ \text{pairwise rel. prime} & \text{has representation} \end{array}$$

 c_k cofactor of gcd (f_1, f_m) in f_k :

 $f_1 = x^2 (y+1)$ $f_3 = z (y+1)$ \Rightarrow $c_1 = x^2 c_3 = z$

Criteria on leading terms for S-polynomial representations - p.19

Theorem:

Can skip \mathbf{S}_{\succ} (f_1, f_3) modulo $(\mathbf{f_1}, \mathbf{f_2}, \mathbf{f_3})$ $\forall f_1, f_2, f_3$ with leading terms t_1, t_2, t_3

Iff (EC-div) and (EC-var)

Theorem:

Can skip $\mathbf{S}_{\succ}(f_1, f_3)$ modulo $(\mathbf{f_1}, \mathbf{f_2}, \mathbf{f_3})$ $\forall f_1, f_2, f_3$ with leading terms t_1, t_2, t_3 Iff (EC-div) and (EC-var) (EC-div): $gcd(t_1, t_3) \mid t_2, or$ $t_2 \mid \mathbf{lcm}(t_1, t_3)$ (EC-var): $\forall x \quad \deg_x t_1 = 0, or$ $\deg_{r} t_{3} = 0, or$ $\deg_{x} t_{2} \leq \deg_{x} \operatorname{lcm}(t_{1}, t_{3})$

$$t_1 = wx \quad t_2 = wy \quad t_3 = wz$$

no pairs relatively prime \implies not BCG
 no link divides lcm \implies not BCL

 \therefore **BC** $\not\Longrightarrow$ Can skip $\mathbf{S}_{\succ}(f_i, f_j)!$

Criteria on leading terms for S-polynomial representations - p.21

$$t_1 = wx \quad t_2 = wy \quad t_3 = wz$$

- variable-wise:

$$\deg_{w} t_{2} \leq \deg_{x} \operatorname{lcm}(t_{1}, t_{3}) \deg_{x} t_{3} = 0 \deg_{y} t_{1} = 0 \deg_{z} t_{1} = 0$$

$$EC\operatorname{-var}(t_{1}, t_{2}, t_{3})$$

: We can skip $S_{\succ}(f_1, f_3)$ for $F = (f_1, f_2, f_3)!$

Illustration of BCL

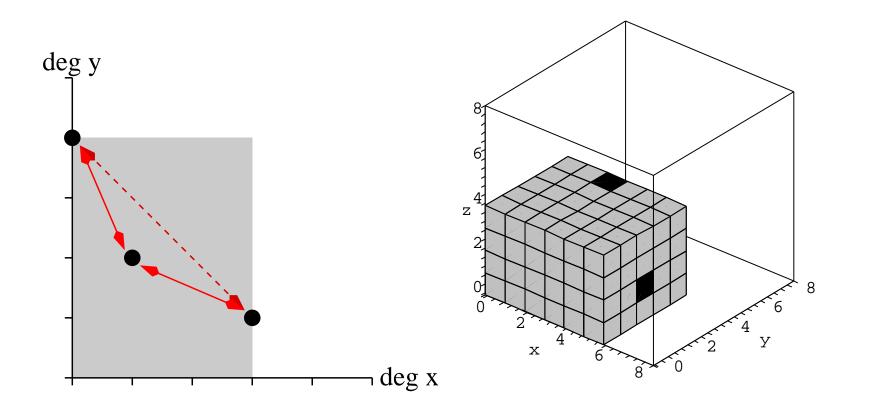
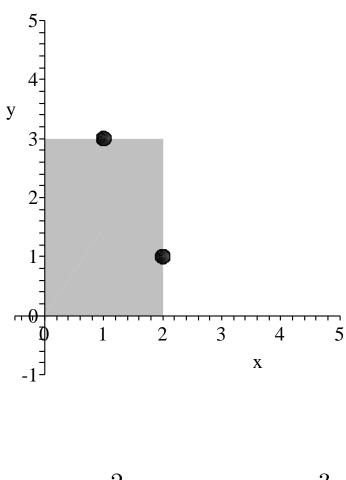


Illustration (2D)



 $t_1 = x^2 y \qquad t_3 = x y^3$

Illustration (2D)

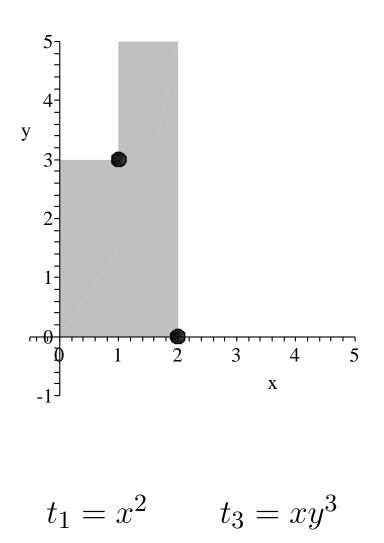
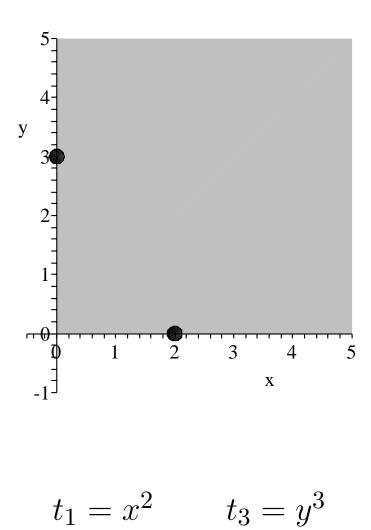
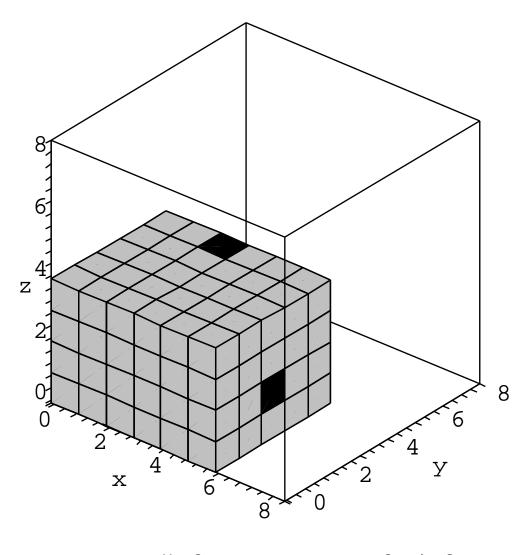
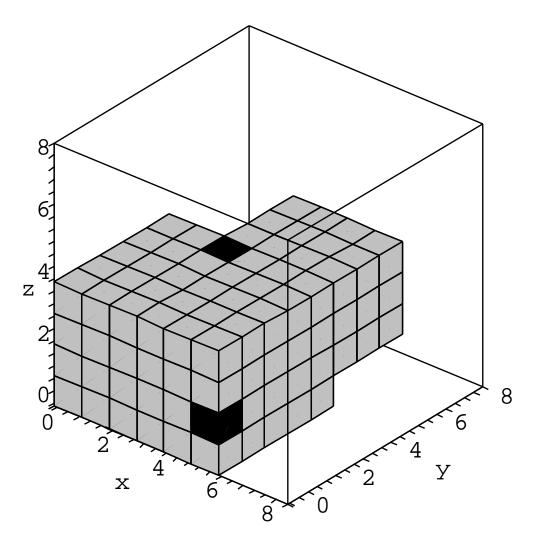


Illustration (2D)



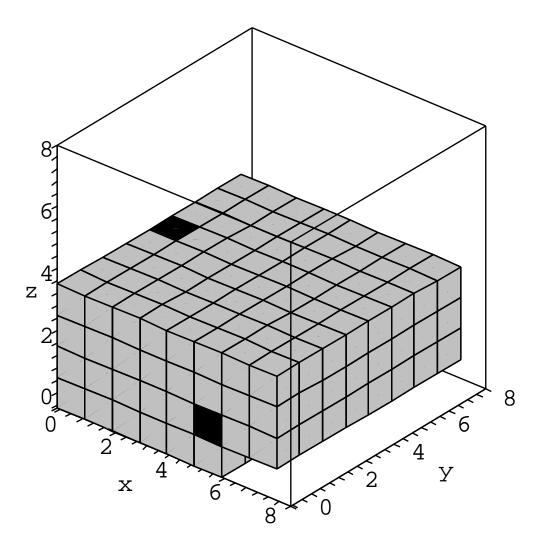


$$t_1 = x^5 y^2 z \qquad t_3 = x^2 y^4 z^3$$



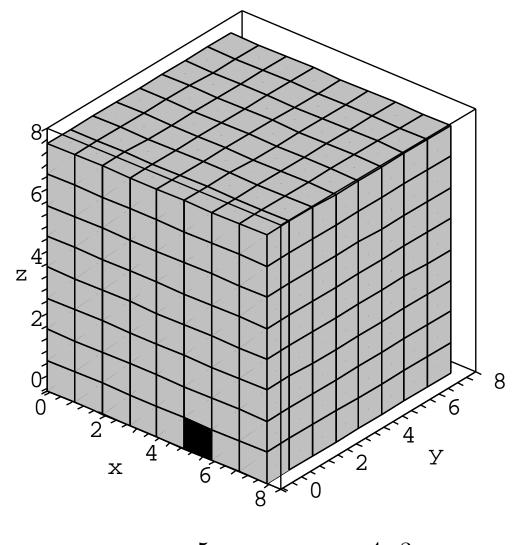
 $t_1 = x^5 z \qquad t_3 = x^2 y^4 z^3$

Illustration (3D, share z)



 $t_1 = x^5 z$ $t_3 = y^4 z^3$

Illustration (3D, share none)



 $t_1 = x^5$ $t_3 = y^4 z^3$

Last theorem **does not apply** to #lts = 3, #polys = 4 !!! (#lts < #polys)

Example:

 $f_{1} = wx + y \quad f_{2} = wy \quad f_{3} = wz \quad f_{4} = y^{2}$ $\mathbf{S}_{\succ} (f_{1}, f_{2}) = y^{2} = f_{4}$ $\mathbf{S}_{\succ} (f_{2}, f_{3}) = 0$ $\mathbf{BUT...} \quad \mathbf{S}_{\succ} (f_{1}, f_{3}) = yz$

: We cannot skip $S_{\succ}(f_1, f_3)$ for $F = (f_1, f_2, f_3, f_4)!$

Analysis of Answer

- **100,000 triplets** (t_1, t_2, t_3)
- random exponents (uniform distribution)
- maximum degree of each indeterminate: 10
- Order critical pairs by ascending lcm
- Does third critical pair satisfy:
 BC?
 EC?

vars	BC	EC - BC	EC / BC
3	53294	7080	1.13
4	42542	6086	1.14
5	34633	4697	1.14
6	28310	3664	1.13

Chained Polynomial Skips

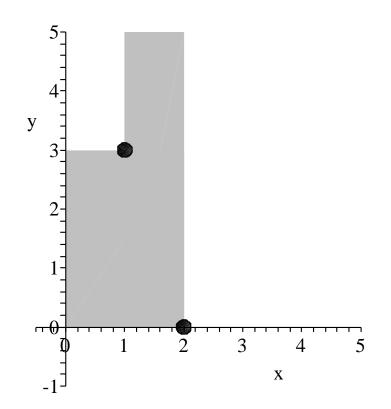
- 100,000 triplets (t_1, t_2, t_3)
- maximum degree of each indeterminate: 10
- ordered by ascending lcm, lex order

vars	BC	EC - BC	EC / BC
3	53319	6984	1.13
4	42478	5978	1.14
5	34452	4616	1.13
6	28216	3550	1.13

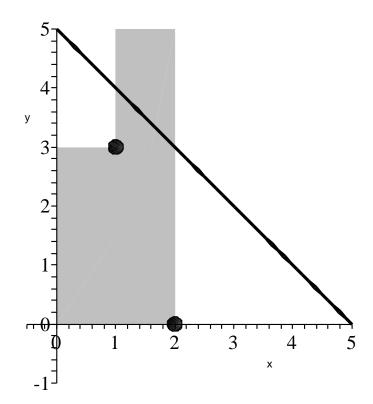
Chained Polynomial Skips

- 100,000 triplets (t_1, t_2, t_3)
- maximum degree of each indeterminate: 10
- ordered by ascending lcm, tdeg order (grevlex)

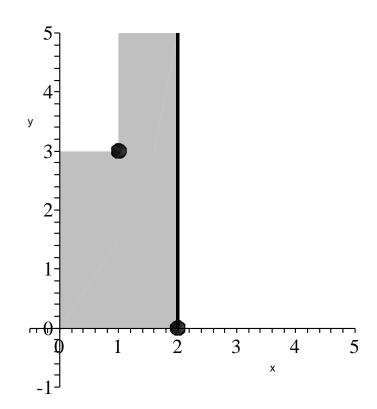
Idea 1: Appropriate t_1, t_3 rare (one lacks other's indeterminate).



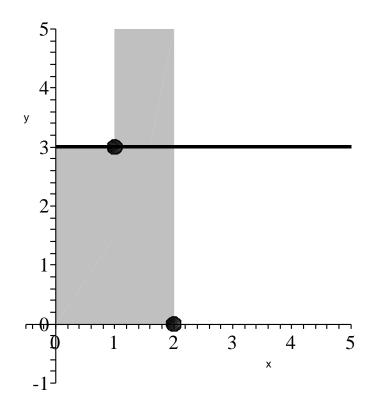
Idea 2: Appropriate t_2 rare (order cp's by ascending lcm).



Idea 2: Appropriate t_2 rare (order cp's by ascending lcm).



Idea 2: Appropriate t_2 rare (order cp's by ascending lcm).



Generalization of criteria:

- #leading terms = # polynomials > 3
- What leading terms exploit gcd fully?
- Generalized criteria \equiv GB decision?

Thank you!