Highlighted homework is due soon |
Date |
Assignment | ||||||||||||||||||||||
10 May | 35.8, 36.1, 36.2, 36.4, 36.5 Also,
|
||||||||||||||||||||||
1 May | Video and handout on Fermat’s Last Theorem Also, for extra credit (in homework): in class we showed that dividing \(8+7i\) by \(3+2i\) could have two legitimate results: \(q=3\) and \(r=-1+i\), or \(q=3+i\) and \(r=1-2i\). By “legitimate” we mean the remainder is smaller than the divisor, where “smaller” is measured according to the Euclidean norm \(\left\Vert a+bi\right\Vert=a^2+b^2\). Are there other legitimate remainders? If so, what are they? If not, why not? What is the maximum number of remainders Gaussian integer division can result in, and why? |
||||||||||||||||||||||
Material for test 2, from here down | |||||||||||||||||||||||
20 Apr |
|
||||||||||||||||||||||
12 Apr | 15.2, 15.3, 15.5, 16.1, 16.3, 17.1, 17.2, 17.4 Hint for 17.4: Factor out gcd, solve new problem, use to construct solution to original |
||||||||||||||||||||||
10 Apr | Read Chapter 18 | ||||||||||||||||||||||
5 Apr | Read Chapter 17 Exercises 12.2, 12.3(a,b), 13.3, 14.1, 14.2 Also prove that any prime larger than 4 is congruent to 1 or 5, modulo 6. Hints:
| ||||||||||||||||||||||
3 Apr | Read Chapter 16 | ||||||||||||||||||||||
29 Mar | Exercises 11.1, 11.2, 11.3, 11.5, 11.6 For participation points: 11.10 | ||||||||||||||||||||||
Material for test 1, from here down | |||||||||||||||||||||||
8 Mar | Exercises 10.1, 10.2 | ||||||||||||||||||||||
6 Mar | Read Chapter 11 Exercises 8.2, 8.3, 8.4(b-e), 8.5, 8.9, 9.1, 9.3 | ||||||||||||||||||||||
22 Feb | Exercises 6.1, 6.2, 6.5, 6.6(a-c) Bonus 6.6(d-f) 7.1, 7.2, 7.6 | ||||||||||||||||||||||
20 Feb | Read Chapters 9, 10 | ||||||||||||||||||||||
15 Feb | Read Chapter 8 (pushed back due to illness) Exercises 3.1, 3.2, 3.3 Exercises 5.1, 5.3, 5.4 | ||||||||||||||||||||||
6 Feb | Read Chapters 6, 7 | ||||||||||||||||||||||
1 Feb | Exercises 2.2, 2.6, 2.7 | ||||||||||||||||||||||
25 Jan | Exercises 1.1, 1.2, 1.6 | ||||||||||||||||||||||
23 Jan | Read Chapters 1, 2 |