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Abstract

Buchberger’s Gröbner basis theory plays a fundamental role in symbolic computation. The
resulting algorithms essentially carry out several S-polynomial reductions. In his PhD thesis
and later publication Buchberger showed that sometimes one can skip S-polynomial reductions
if the leading terms of polynomials satisfy certain criteria. A question naturally arises: Are
Buchberger’s criteria also necessary for skipping S-polynomial reductions? In this paper, after
making the question more precise (in terms of a chain condition), we show the answer to be
“almost, but not quite”: necessary when there are four or more polynomials, but not necessary
when there are exactly three polynomials. For that case, we found an extension to Buchberger’s
criteria that is necessary as well as sufficient.

Key words: Gröbner bases, S-polynomials, Buchberger criteria

1991 MSC: 13P10

1. Introduction

Buchberger’s theory and algorithm for Gröbner bases (Buchberger, 1965) play a fun-
damental role in computer algebra and symbolic computation. The algorithm essentially
carries out several S-polynomial reductions. In (Buchberger, 1965) and (Buchberger,
1979), Buchberger showed that sometimes one can skip S-polynomial reductions if the
leading terms of the polynomials satisfy certain criteria. A number of researchers have
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since studied how to apply these criteria to Buchberger’s algorithm (Buchberger, 1985;
Gebauer and Möller, 1988; Caboara et al., 2002). A question naturally arises: Are Buch-
berger’s criteria also necessary for skipping S-polynomial reductions? In this paper, we
show the answer to be “almost, but not quite”.

In order to explain the meaning and the scope of the answer, let us make the question
a bit more precise (also a bit more narrow). For this, we recall the notion of a chain
condition. We say that three terms t1, t2 and t3 satisfy the chain condition when for all
polynomials f1, . . . , fm (where f1, f2 and f3 have t1, t2 and t3 as leading terms)

if the S-polynomial of f1 and f2 has a representation over f1, . . . , fm, and
the S-polynomial of f2 and f3 has a representation over f1, . . . , fm,

then the S-polynomial of f1 and f3 has a representation over f1, . . . , fm.
(We review the definition of representation in the following section.) Buchberger showed
that if t1 and t3 are relatively prime (the first criterion) or t2 divides the lcm of t1 and
t3 (the second criterion), then t1, t2 and t3 satisfy the chain condition. Now the question
can be stated more precisely: Are Buchberger’s two criteria also necessary for the chain
condition?

As mentioned above, we found the answer to be almost, but not quite. Buchberger’s
criteria are necessary when there are four or more polynomials (m ≥ 4). However, when
there are exactly three polynomials (m = 3), Buchberger’s criteria are not necessary. For
that case (m = 3), we found an extension to Buchberger’s criteria that is necessary as
well.

We assume that the reader is acquainted with the basic notions and terminology
associated with Gröbner basis theory, that can be found in many excellent textbooks,
such as (Becker et al., 1993; Adams and Loustaunau, 1994; Cox et al., 1997; Fröberg,
1997; Cox et al., 1998; Kreuzer and Robbiano, 2000).

The paper is structured as follows. In Section 2, we give precise statements of the
question and the answer (two main theorems, one stating “Almost” and the other stating
“But not quite”). We also illustrate the answer graphically in the hope of providing
intuitive understanding. In Section 3, we provide proofs for the answer (two theorems).
Finally, in Section 4, we discuss and clarify the result’s relationship to several other
works, and indicate some further questions.

2. Main Theorems

In this section, we state the question and the answer precisely. We begin by recalling
the definitions of several basic notions. We work in a polynomial ring F[x1, . . . , xn]. Let
Â denote an admissible term ordering. For a polynomial f , we write lt (f) for the leading
term of f , lm (f) for the leading monomial of f , and lc (f) for the leading coefficient of
f , where we follow the convention that a monomial includes a coefficient, while a term
does not. The S-polynomial of two polynomials fi and fj , written as Sfi,fj is defined by

Sfi,fj := σfi,fj · fi − σfj ,fi · fj

where

σfi,fj :=
lcm (lt (fi) , lt (fj))

lm (fi)
.

We say that an S-polynomial Sfi,fj has a representation modulo F = (f1, . . . , fm)
and write

Rep
(
Sfi,fj , F

)
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if there exists (h1, . . . , hm) such that

Sfi,fj
= h1 · f1 + · · ·+ hm · fm

and for k = 1, . . . , m either hk = 0 or

lt (hk) · lt (fk) ≺ lcm (lt (fi) , lt (fj)) .

We call (h1, . . . , hm) a representation of Sfi,fj modulo F . 1

Definition 1 (Chain Condition). We say that terms t1, t2, t3 satisfy the m-chain condi-
tion and write

Chain Condition (t1, t2, t3; m)
if for all F = (f1, . . . , fm) such that t1 = lt (f1) , t2 = lt (f2) , t3 = lt (f3) we have

Rep (Sf1,f2 , F ) and Rep (Sf2,f3 , F ) =⇒ Rep (Sf1,f3 , F ) .3

It is important to note that the chain condition is over terms, not over polynomials.
In fact, the polynomials are universally quantified. Thus, if the condition holds on some
terms, then the implication “=⇒” holds for all polynomials having those terms as leading
terms. Since the notion makes sense only when m ≥ 3, from now on we will assume
that m ≥ 3. In (Buchberger, 1965) and (Buchberger, 1979), Buchberger introduced the
following criteria on terms and then proved the subsequent theorem. 2

Definition 2 (Buchberger’s Criteria). We say that terms t1, t2, t3 satisfy Buchberger’s
criteria and write

Buchberger Criteria (t1, t2, t3)
if gcd(t1, t3) = 1 or t2 divides lcm (t1, t3) . 3

Theorem 3 (Buchberger 1965, 1979). For all t1, t2, t3 and m we have

Chain Condition (t1, t2, t3; m) ⇐= Buchberger Criteria (t1, t2, t3) .3

Buchberger’s Criteria consists of a disjunction of two criteria: the first part is called
the first (or gcd) criteria and the second part is called the second (or lcm) criteria.
The theorem states that Buchberger’s criteria are sufficient for the chain condition. A
question naturally arises: Are Buchberger’s criteria also necessary for the chain condition
(hence making them equivalent)?

The main contribution of this paper is to show that the answer is “almost, but not
quite”; it depends on the number m of polynomials. For m ≥ 4, it is indeed necessary,
but for m = 3, it is not. We first state the “almost” case precisely.

1 The notion of representation is taken from (Becker et al., 1993). One might wonder why we talk
about representation instead of reduction to zero. It is because representations also can be used for
characterizing Gröbner bases: a system is a Gröbner basis iff all the S-polynomials have representations
(Becker et al., 1993; Cox et al., 1997). Furthermore, it turns out that using representation makes it easy
to state and prove our main results. Nowadays Buchberger’s criteria are also stated and proved in terms
of representation, due to its simplicity (Becker et al., 1993; Cox et al., 1997).
2 Buchberger presented the theorem in a slightly different way, but it is essentially the same as the one
given here. We present it in this way because it is more convenient for describing the results of this paper.
Buchberger also considered the possibility of longer chains, but in this paper, we restrict our discussions
to chains of length three, because they still capture the essential idea.
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Theorem 4 (Almost). For all t1, t2, t3 and m ≥ 4, we have

Chain Condition (t1, t2, t3;m) ⇐⇒ Buchberger Criteria (t1, t2, t3) .3

Before we state the “but not quite” case, we introduce an extension of Buchberger’s
criteria.

Definition 5 (Extended Criteria). We say that terms t1, t2, t3 satisfy the extended cri-
teria and write

Extended Criteria (t1, t2, t3)

if the terms satisfy the two conditions (EC div) and (EC var), where
(EC div) gcd (t1, t3) divides t2 or t2 divides lcm (t1, t3)
(EC var) VBGx (t1, t3) or (for every variable x VBLx (t1, t2, t3)), where

VBGx (t1, t3) := min(degx t1, degx t3) = 0

VBLx (t1, t2, t3) := degx t2 ≤ max (degx t1,degx t3) . 3

In the above, VBG stands for “Variable-wise Buchberger Gcd criterion” and VBL
stands for “Variable-wise Buchberger Lcm criterion”.

Theorem 6 (But not quite). For all t1, t2, t3 and m = 3, we have

Chain Condition (t1, t2, t3;m) ⇐⇒ Extended Criteria (t1, t2, t3) .3

It is easy to see that the Buchberger’s Criteria imply the Extended Criteria, but
the Extended Criteria do not imply Buchberger’s Criteria. Hence, the above theorem
(Theorem “But not quite”) tells us that there are terms that do not satisfy Buchberger’s
criteria, but still satisfy the chain condition.

Figure 1 illustrates Theorem “But not quite” graphically for two variable cases (first
row) and three variable cases (second row). For several chosen terms t1 and t3 (colored
black) all possible terms t2 satisfying the chain condition are shaded. Observe that when
t1 and t3 share all variables (Cases 2a and 3a), the condition VBGx (t1, t3) is false for all
variables x, and thus the extended criteria is equivalent to Buchberger’s lcm criterion.
When t1 and t3 share no variables (Cases 2d and 3d), the condition VBGx (t1, t3) is
true for all variables x, and thus the extended criteria is equivalent to Buchberger’s
gcd criterion. When t1 and t3 share some variables but not all (Cases 2b, 2c, 3b, 3c),
the extended criteria is not equivalent to Buchberger’s criteria, providing more general
criteria than Buchberger’s.

Note that applying Buchberger’s criteria to Cases 2b, 2c and 3b, 3c would have given
the same shaded regions as those shown in Cases 2a and 3a. Hence the segments in Cases
2b, 2c, 3b, 3c that “stick out” beyond the pictures for Cases 2a and 3a are additional
terms t2 satisfying the chain condition.

We conclude this section with two concrete examples of when the new criterion does
and does not help.
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Figure 1. Illustration of Theorem “But not quite”

Example 7. Let F = (f1, f2, f3, f4) where

f1 = x10
0 x12

1 + x10
0 + 2x8

0x
12
1 + 2x8

0 − 21x4
0x

12
1 − 21x4

0 + 12x3
0x
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1 + 12x3

0 + 2x12
1 + 2

f2 = x12
1 x10
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2 − 3x4

2 + 2x3
2 + x2

2 − 8x2 − 1

f3 = x10
0 x8
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8
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0x

8
3 − 21x04 + 12x3

0x
8
3 + 12x3

0 + 2x8
3 + 2

f4 = x8
3x

10
4 + x8

4 + 1

Let ≺ be a lexicographic ordering where x0 ≺ x1 ≺ x2 ≺ x3 ≺ x4. Then lt (f1) = x10
0 x12

1 ,
lt (f2) = x12

1 x10
2 , lt (f3) = x10

0 x8
3, and lt (f4) = x8

3x
10
4 . We trace Buchberger’s algorithm,

using the normal strategy for selecting critical pairs.
The normal strategy sorts the list of critical pairs as

B = ((1, 2) , (1, 3) , (2, 3) , (3, 4) , (1, 4) , (2, 4)) ,

so the first S-polynomial to be considered is Sf1,f2 , which does not have a representation
modulo F . After reducing Sf1,f2 modulo F , we append to F the resulting polynomial f5,
whose leading term is x10

0 x10
2 . We add the requisite critical pairs to B, and sort the list,
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obtaining

B = ((1, 5) , (2, 5) , (1, 3) , (3, 5) , (2, 3) , (3, 4) , (1, 4) , (4, 5) , (2, 4)) .

The next S-polynomials to be considered are Sf1,f5 , Sf2,f5 , and Sf1,f3 , which all have
representations modulo F . In fact, Buchberger’s second criterion implies that Sf2,f5 has
a representation by a chain with f1. Note that one can find representations of Sf1,f5 and
Sf1,f3 modulo (f1, f5) and (f1, f3), respectively.

This brings us to Sf3,f5 . Inspection shows that the leading terms of f3 and f5 satisfy the
Extended Criteria, and moreover that none of the other leading terms divides their lcm
(x10

0 x10
2 x8

3). Because we can find representations of Sf1,f3 and Sf1,f5 modulo (f1, f3, f5)
only, Theorem “But not quite”implies that Sf3,f5 has a representation modulo (f1, f3, f5);
there is no need to compute it explicitly. This shows that the Extended Criteria are not
equivalent to Buchberger’s criteria.

The next S-polynomial to be considered is Sf2,f3 , which by Buchberger’s first criterion
has a representation modulo F .

Since Sf3,f4 does not have a representation modulo F , we reduce it modulo F and
append to F the resulting polynomial f6, which has leading term x10

0 x10
4 . We add the

requisite critical pairs to B and sort the list, obtaining

B = ((1, 6) , (5, 6) , (2, 6) , (3, 4) , (3, 6) , (4, 6) , (1, 4) , (4, 5) , (2, 4)) .

The S-polynomial Sf1,f6 has a representation modulo F . In fact, one can find a rep-
resentation modulo (f1, f6).

We come to Sf5,f6 . As with Sf3,f5 , the leading terms satisfy the Extended criteria,
and we can build a chain with f1, since Sf1,f5 and Sf1,f6 have representations modulo
(f1, f5, f6). By Theorem “But not quite,” Sf5,f6 has a representation modulo (f1, f5, f6).

By Buchberger’s first criterion, Sf2,f6 has a representation. By the Extended Criteria,
Sf3,f6 has a representation, building a chain with f1. By Buchberger’s second criterion,
Sf4,f6 has a representation, building a chain with f3. By Buchberger’s first criterion,
Sf1,f4 , Sf4,f5 , and Sf2,f4 have representations.

The algorithm now concludes. Out of fifteen S-polynomials, we computed a represen-
tation for six. (Phrased another way, we carried out six S-polynomial reductions.) Had
we not used the Extended Criteria, we would have computed nine.

Example 8. Let F = (f1, f2, f3, f4) where

f1 = x0x1 + x2

f2 = x0x2 + x1

f3 = x0x3 + x3

and let ≺ be a lexicographic term ordering where x3 ≺ x2 ≺ x1 ≺ x0.
The first S-polynomial considered is Sf2,f3 . This does not have a representation mod-

ulo F , so we append f4 = x1x3 − x2x3. After this, we consider Sf3,f4 , Sf1,f4 , and Sf1,f3 ,
all of which have representations. Indeed, Buchberger’s second criterion detects a repre-
sentation for Sf1,f3 , building a chain with f4.

This brings us to Sf1,f2 . The leading terms of f1, f2, and f3 satisfy the Extended
Criteria, and both Sf1,f3 and Sf2,f3 have representations modulo F , so one might näıvely
expect that Sf1,f2has a representation modulo F . To the contrary, no such representation
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exists. We must append f5 = x2
1 − x2

2 to F . It is easily verified that the remaining S-
polynomials have representations, and F = (f1, f2, f3, f4, f5) is a Gröbner basis.

What happened with Sf1,f2? A careful reading of Theorem “But not quite” shows
that in order to apply the Extended Criteria the representations of Sf1,f3 and Sf2,f3 can
only be over (f1, f2, f3). This is why we took pains to note such details in the previous
example! In this example, the representations of the latter two S-polynomials depend on
f4, which lies outside the triplet of leading terms of f1, f2, and f3, so Theorem “But not
quite” does not apply.

The examples show that the Extended Criteria are sometimes useful, and other times
not. A full statistical analysis of their benefit is desirable, but lies beyond the scope of
the current paper. See Section 4 for related questions.

3. Proof

In this section, we prove the two main theorems “Almost” and “But not quite”.
Since Buchberger has proved the sufficiency side of Theorem “Almost”, that is, (Chain -
Condition) ⇐= (Buchberger Criteria), it remains to show
• the necessity side of Theorem “Almost”: that is,

(Chain Condition) =⇒ (Buchberger’s Criteria);
• the necessity side of Theorem “But not quite”: that is,

(Chain Condition) =⇒ (Extended Criteria);
• the sufficiency side of Theorem “But not quite”: that is,

(Chain Condition) ⇐= (Extended Criteria).
Subsections 3.1, 3.2, and 3.3 respectively provide the proofs of these three assertions.

Before we plunge into details, we first provide a rough overview of the strategy and
structure for the proofs, and remark on where the difficulties lay, as well as how we
overcame them.

In order to prove the necessity side of Theorem “Almost”, that is, (Chain Condition)
=⇒ (Buchberger Criteria), we construct suitable “witness” polynomials f1, . . . , fm such
that the S-polynomial of f1 and f2 and the S-polynomial of f2 and f3 have represen-
tations. We assumed the Chain Condition, so the S-polynomial of f1 and f3 also has a
representation, whose structure in turn implies Buchberger’s Criteria. Of course, the diffi-
culty lies in finding a suitable witness. We conjectured some witnesses without too much
difficulty; however, proving that these were indeed witnesses was non-trivial, because
many subtle details required careful attention.

We tackled the necessity side of Theorem “But not quite”, that is, (Chain Condition)
=⇒ (Extended Criteria), in a similar manner. However, the witness polynomials of The-
orem “Almost” could not be reused here, and finding new witnesses proved to be non-
trivial. This required detailed analysis of term structure and the behavior (or misbehav-
ior) of S-polynomials.

In order to prove the sufficiency side of Theorem “But not quite”, that is, (Chain -
Condition) ⇐= (Extended Criteria), we note that the polynomials are universally quan-
tified in the Chain Condition. The Extended Criteria only provide information about the
leading terms, so we had to construct a representation of the S-polynomial Sf1,f3 with-
out any information about the non-leading terms of f1, f2, f3, about their coefficients, or
about representations of Sf1,f2 and Sf2,f3 .
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Of course, much more difficult than proving Theorem “But not quite” was forming,
in the first place, a promising conjecture to prove. This required not merely months, but
years! Initially, we conjectured that Buchberger’s criteria were “always” necessary. After
some time spent in fruitless pursuit of a proof for this conjecture, we discovered a coun-
terexample. This counterexample generalized naturally to (EC div); however, proving its
sufficiency turned out to be difficult. We discovered the correct form of the conjecture
involving (EC var) also, along with the general idea of the proof, only after computing
tens of thousands of sets of polynomials and carefully analyzing their structure. In ret-
rospect, it is remarkable how much information about the polynomials one can glean
from such a small amount of information: the structure of their leading terms, and the
assumption that two S-polynomials have representations.

3.1. Necessity side of Theorem “Almost”

In this section, we show that (Chain Condition) =⇒ (Buchberger Criteria) for The-
orem “Almost;” that is, one of Buchberger’s criteria is necessary for skipping an S-
polynomial reduction when m ≥ 4 polynomials. We begin with a technical but crucial
lemma, which we will also use in the next subsection.

Lemma 9. Let f1, . . . , fm be such that

f1 = t1 + u

f2 = t2
...

fm = tm

where u is a term such that u ≺ t1. Let j > 1. Suppose that Sf1,fj has a representation
(h1, . . . , hm) modulo (f1, . . . , fm). Let

τk = lcm (t1, tj)
(

u

t1

)k

.

Then there exists k ≥ 1 such that τk appears in h2f2 + · · ·+ hmfm. 3

Proof. We proceed by contradiction. Assume, to the contrary, that there does not exist
k ≥ 1 such that τk appears in h2f2 + · · · + hmfm. We will derive a contradiction. Note
that

Sf1,fj = h1t1 + h1u + h2f2 + · · ·+ hmfm. (1)
Note that τ1 = Sf1,fj . Since τ1 is the term on the left-hand side of equation (1), the term
τ1 must also appear on the right-hand side. Suppose that τ1 appears in h1u. Then τ1/u
would appear in h1, so

lcm (t1, tj) Â lt (h1) · lt (f1) º τ1

u
· t1 = lcm (t1, tj) ,

which is a contradiction. Therefore, τ1 cannot appear in h1u. Recall that we assumed
that τ1 does not appear in h2f2 + · · ·+ hmfm. Thus τ1 appears in h1t1.

Note that τ1/t1 appears in h1. Thus τ2 = τ1/t1 · u appears in h1u. Note also that
τ1 Â τ2. Hence τ2 does not appear on the left hand side of (1). Therefore τ2 must appear
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in h1t1 or in h2f2 + · · · + hmfm. Recall that we assumed that τ2 does not appear in
h2f2 + · · ·+ hmfm. Thus τ2 appears in h1t1.

Note that τ2/t1 appears in h1. Thus τ3 = τ2/t1 · u appears in h1u. Note also that
τ2 Â τ3. Hence τ3 does not appear on the left hand side of (1). Therefore τ3 must appear
in h1t1 or in h2f2 + · · · + hmfm. Recall that we assumed that τ3 does not appear in
h2f2 + · · ·+ hmfm. Thus τ3 appears in h1t1.

Continuing in the same way, we obtain an infinite descending sequence of terms τ1 Â
τ2 Â τ3 Â · · · that appear in h1t1, contradicting the fact that h1t1 has only finitely many
terms. 2

Lemma 10. For m ≥ 4, (Chain Condition) =⇒ (Buchberger Criteria). 3

Proof. Let m ≥ 4. Assume (Chain Condition). If t1 = 1, then t1 and t3 are relatively
prime, so (Buchberger Criteria) is satisfied. Thus we assume that t1 6= 1. Let

f1 = t1 + 1
f2 = t2

f3 = t3

and put
f4 = · · · = fm = Sf1,f2 .

Note that Sf2,f3 = 0. Thus it has the trivial representation (0, 0, 0). Note also that Sf1,f2

has a representation since
Sf1,f2 = 1 · f4

and

lt (1) · lt (f4) =
lcm (t1, t2)

t1
≺ lcm (t1, t2) .

Recall that we assumed (Chain Condition); thus we have a representation (h1, . . . , hm)

for Sf1,f3 . By Lemma 9, there exists k ≥ 1 such that τk = lcm (t1, t3)
(

1
t1

)k

appears in
h2f2 + · · ·+ hmfm. We consider three cases:
Case 1: τk is a term of h2f2.

Then t2 | lcm (t1, t3)
(

1
t1

)k

. Thus tk1t2 | lcm (t1, t3) . Hence t2 | lcm (t1, t3).

Case 2: τk is a term of h3f3.

Then t3 | lcm (t1, t3)
(

1
t1

)k

. Thus tk1t3 | lcm (t1, t3) . Hence gcd (t1, t3) = 1.

Case 3: τk is a term of hkfk for 4 ≤ k ≤ m.

Then Sf1,f2 | lcm (t1, t3)
(

1
t1

)k

. Therefore, lcm(t1,t2)
t1

divides lcm (t1, t3)
(

1
t1

)k

.

Thus lcm (t1, t2) tk−1
1 | lcm (t1, t3) . Hence t2 | lcm (t1, t3).

In each of the three cases, we have (Buchberger Criteria). Thus, the necessity side of
Theorem “Almost” has been proved. 2
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3.2. Necessity side of Theorem “But not quite”

In this section, we show (Chain Condition) =⇒ (Extended Criteria) for Theorem “But
not quite.” We prove a separate lemma for each part of the conjunction: Lemma 11 for
(EC div), and Lemma 12 for (EC var).

Lemma 11. For m = 3, (Chain Condition) =⇒ (EC div). 3

Proof. Assume (Chain Condition). If t1 | t2, then gcd (t1, t3) | t2. The lemma follows
immediately. Thus we assume that t1 - t2. Let

f1 = t1 + gcd (t1, t2)
f2 = t2
f3 = t3.

Since t1 - t2, the term gcd (t1, t2) is a proper factor of t1. Hence f1 is a binomial with
lt (f1) = t1.

Note that Sf2,f3 = 0. Thus it has the trivial representation (0, 0, 0). In addition,

Sf1,f2 =
lcm (t1, t2)

t1
· gcd (t1, t2) =

t2
gcd (t1, t2)

· gcd (t1, t2) = f2

so Sf1,f2 = 1 · f2. Note that (0, 1, 0) is a representation of Sf1,f2 because

lt (1) · lt (f2) = 1 · lt (f2) ≺ lcm (lt (f1) , lt (f2)) .

Since Sf1,f2 and Sf2,f3 both have representations modulo F , it follows from the chain
condition that Sf1,f3 also has a representation (h1, h2, h3) modulo F such that

Sf1,f3 = h1f1 + h2f2 + h3f3.

By Lemma 9, there exists k ≥ 1 such that τk = lcm (t1, t3)
(

gcd(t1,t2)
t1

)k

appears in
h2f2 + h3f3. We consider two cases.
Case 1: τk appears in h2f2.

Then t2 | lcm (t1, t3)
(

gcd(t1,t2)
t1

)k

. Thus
(

t1
gcd(t1,t2)

)k

t2 | lcm (t1, t3) . Hence
t2 | lcm (t1, t3).

Case 2: τk appears in h3f3.

Then t3 | lcm (t1, t3)
(

gcd(t1,t2)
t1

)k

. Thus
(

t1
gcd(t1,t2)

)k

t3 | lcm (t1, t3). Thus

(
t1

gcd (t1, t2)

)k
t3t2

lcm (t1, t3)
| t2

(
t1

gcd (t1, t2)

)k
t3t2gcd (t1, t3)

t1t3
| t2

(
t1

gcd (t1, t2)

)k−1
t1

gcd (t1, t2)
t2
t1

gcd (t1, t3) | t2

(
t1

gcd (t1, t2)

)k−1
t2

gcd (t1, t2)
gcd (t1, t3) | t2.

10



Hence gcd (t1, t3) | t2.
Thus, in each of the two cases, we have (EC div). 2

Lemma 12. For m = 3, (Chain Condition) =⇒ (EC var). 3

Proof. Since (Chain Condition) and (EC var) are symmetric in t1 and t3, we may as-
sume that t1 º t3 without loss of generality. We proceed by contradiction, that is, we
assume (Chain Condition) and ¬(EC var), and show that it will lead to a contradiction.

Let F = (f1, f2, f3) where

f1 = t1 + u

f2 = t2
f3 = t3

where u is the term such that for every variable x

degx u =





degx t3 if degx t2 ≤ max (degx t1, degx t3) ;

max (degx t1 + degx t3,degx t2)

− degx t2

otherwise.

Note that u | t3. Since we assumed ¬(EC var), there is a variable x such that degx t2 >
max(degx t1,degx t3) and min(degx t1, degx t3) > 0. Thus u 6= t3. It follows u ≺ t3 ¹ t1,
and f1 is a binomial with lt (f1) = t1.

Note that Sf2,f3 = 0. Thus it has the trivial representation (0, 0, 0). Note

Sf1,f2 =
lcm (t1, t2)

t1
· u =

lcm (t1, t2)
t1t3

· u · f3 = q · f3.

where

q =
lcm (t1, t2)

t1t3
· u.

We show that (0, 0, q) is a representation of Sf1,f2 .
Claim 1: q is a term.

Let x be any variable. If degx t2 > max (degx t1, degx t3), then

degx q = degx t2 − (degx t1 + degx t3)
+ max (degx t1 + degx t3, degx t2)− degx t2

≥ 0.

If however degx t2 ≤ max (degx t1, degx t3), then

degx q = max (degx t1, degx t2)− (degx t1 + degx t3)
+ degx t3

≥ 0;

Claim 2: (0, 0, q) is a representation of Sf1,f2 .
We only need to note

lt (q) · lt (f3) =
lcm (t1, t2)

t1t3
ut3 ≺ lcm (t1, t2)

t1
· t1 = lcm (t1, t2) .

11



By the chain condition, Sf1,f3 has a representation modulo F such that

Sf1,f3 = h1f1 + h2f2 + h3f3.

By Lemma 9, there exists k ≥ 1 such that τk = lcm (t1, t3)
(

u
t1

)k

appears in h2f2 +h3f3.
From now on let x stand for a variable such that degx t2 > max(degx t1, degx t3) and

min(degx t1, degx t3) > 0. Note that degx u = max(degx t1 + degx t3, degx t2) − degx t2.
It is easy to verify that degx u < min(degx t1, degx t3). Now we consider two cases.
Case 1: τk appears in h2f2.

Then t2 | lcm (t1, t3)
(

u
t1

)k

. Thus we have

degx t2 ≤ max(degx t1, degx t3) + k(degx u− degx t1) < max(degx t1,degx t3),

which contradicts the fact that degx t2 > max(degx t1, degx t3).

Case 2: τk appears in h3f3.

Then t3 | lcm (t1, t3)
(

u
t1

)k

. Thus we have

degx t3 ≤ max(degx t1, degx t3) + k(degx u− degx t1).

When degx t1 ≤ degx t3, we have degx t3 ≤ degx t3 + k(degx u − degx t1).
Thus

0 ≤ k(degx u− degx t1),
which contradicts the fact that degx u < degx t1.

When degx t1 > degx t3, we have degx t3 ≤ degx t1 + k(degx u − degx t1).
Thus degx t3 − degx t1 ≤ k(degx u− degx t1). Hence

degx u− degx t1 < k(degx u− degx t1),

which contradicts the fact that degx u < degx t1.
We assumed (Chain Condition) and ¬(EC var), and found that this led to a contradic-
tion. Hence (Chain Condition) =⇒ (EC var). 2

Lemmas 11 and 12 show that (EC div) and (EC var) of Theorem “But not quite” are
both necessary for the Chain Condition. Thus, the necessity side of Theorem “But not
quite” has been proved.

3.3. Sufficiency side of Theorem “But not quite”

In this section, we show that (Chain Condition) ⇐= (Extended Criteria) for Theorem
“But not quite.” We begin by listing two propositions about some elementary properties of
leading terms under polynomial addition and multiplication. We will use them frequently
without explicitly referring to them. The proofs are easy, so we omit them.

Proposition 13. For all non-zero polynomials f, g, we have (A) and (B) and (C) where
(A) If f ± g 6= 0, then lt (f ± g) ¹ maxÂ (lt (f) , lt (g)).
(B) lt (f · g) = lt (f) · lt (g).
(C) If f | g, then lt (f) | lt (g). 3

12



Proposition 14. For all polynomials fi, fj such that i 6= j: (A)=⇒(B) where
(A) Sfi,fj has the representation (h1, . . . , hm) modulo (f1, . . . , fm).
(B) lm

(
σfi,fj ± hi

)
= σfi,fj and lm

(
σfj ,fi ± hj

)
= σfj ,fi . 3

Lemma 15 is a technical but crucial lemma, that will play an essential role in proving
the sufficiency side of Theorem “But not quite.”.

Lemma 15. We have (A)⇐=(B) where
(A) For every f1, f2, f3 with lt (f1) = t1, lt (f2) = t2, lt (f3) = t3:

if Sf1,f2 and Sf2,f3 have representations modulo (f1, f2, f3),
then gcd (lt (f1) , lt (f3)) = lt (gcd (f1, f3)).

(B) (Extended Criteria) and t2 - lcm (t1, t3) 3.

Proof. Assume (B). Let f1, f2, f3 be arbitrary, but fixed. Assume Sf1,f2 has the repre-
sentation (h1, h2, h3), and Sf2,f3 has the representation (H1,H2,H3), that is,

σf1,f2 · f1 − σf2,f1 · f2 = h1f1 + h2f2 + h3f3

σf2,f3 · f2 − σf3,f2 · f3 = H1f1 + H2f2 + H3f3

By eliminating f2 from the above two equations and collecting expressions with f1 and
f3 on opposite sides, we obtain

P · f1 = Q · f3

where

P = (σf2,f3 −H2) · (σf1,f2 − h1)− (σf2,f1 + h2) ·H1

Q = (σf2,f1 + h2) · (σf3,f2 + H3) + (σf2,f3 −H2) · h3

Let g = gcd (f1, f3), c1 = f1/g, and c3 = f3/g. Then we have

P · c1 = Q · c3

Note that c1 and c3 are relatively prime. Thus c1 | Q. Hence lm (c1) | lm (Q).
We claim that lm (Q) = σf2,f1 · σf3,f2 . In order to prove the claim, first observe that

Q = Q1 + Q2 where

Q1 = (σf2,f1 + h2) · (σf3,f2 + H3)
Q2 = (σf2,f3 −H2) · h3

and that

lm (Q1) = σf2,f1 · σf3,f2

lm (Q2) = σf2,f3 · lm (h3)

Note that

lm (f3) lm (h3) ≺ lcm (lt (f1) , lt (f2))
lcm (lt (f2) , lt (f3))

lm (f2)
· lm (h3) ≺ lcm (lt (f1) , lt (f2))

lm (f2)
· lcm (lt (f2) , lt (f3))

lm (f3)
σf2,f3 · lm (h3) ≺ σf2,f1 · σf3,f2

lm (Q2) ≺ lm (Q1)

13



Thus lm (Q) = lm (Q1 + Q2) = lm (Q1). We have proven the claim.
Recall that lm (c1) | lm (Q), so

lm (f1)
lm (g)

| σf2,f1 · σf3,f2 .

From this, for every variable x, we have

degx t1 − degx lt (g) ≤ max(degx t2, degx t1)− degx t2 + max(degx t3, degx t2)− degx t3.

From condition (B)’s (EC div), for every variable x, we have

min(degx t1, degx t3) ≤ degx t2.

From condition (B)’s (EC var), for every variable x, we have

degx t1 = 0 or degx t3 = 0 or degx t2 ≤ max(degx t1,degx t3).

We claim that the above conditions imply that min(degx t1,degx t3) ≤ degx lt (g). If
degx t1 = 0 or degx t3 = 0, then the claim is trivially true. Thus, assume that degx t1 > 0
and degx t3 > 0. Then we have

min(degx t1, degx t3) ≤ degx t2 ≤ max(degx t1, degx t3).

We consider two cases:
Case 1: degx t1 ≤ degx t3.

Then we have degx t1 ≤ degx t2 ≤ degx t3, and thus

degx t1 − degx lt (g) ≤ degx t2 − degx t2 + degx t3 − degx t3.

Thus we have min(degx t1,degx t3) = degx t1 ≤ degx lt (g).

Case 2: degx t3 ≤ degx t1.
Then we have degx t3 ≤ degx t2 ≤ degx t1, and thus

degx t1 − degx lt (g) ≤ degx t1 − degx t2 + degx t2 − degx t3

Thus we have min(degx t1,degx t3) = degx t3 ≤ degx lt (g).
Thus we have shown that min(degx t1,degx t3) ≤ degx lt (g) for every variable x, that
is, gcd (t1, t3) | lt (g). It is trivial that lt (g) | gcd (t1, t3). Hence gcd (t1, t3) = lt (g). The
Lemma has been proved. 2

We now complete the proof of the sufficiency of the extended criteria.

Lemma 16. For m = 3, (Chain Condition) ⇐= (Extended Criteria). 3

Proof. If t2 | lcm (t1, t3), then (Chain Condition) follows immediately from Buchberger’s
theorem. Thus, from now on, assume that t2 - lcm (t1, t3).

Let t1, t2, t3 be arbitrary, but fixed. Assume that t1, t2, t3 satisfy the Extended Criteria.
Let f1, f2, f3 be arbitrary, but fixed such that lt (f1) = t1, lt (f2) = t2, lt (f3) = t3. Assume
that Sf1,f2 and Sf2,f3 have representations modulo (f1, f2, f3). It remains to show that
Sf1,f3 has a representation modulo (f1, f2, f3).

From Lemma 15,
gcd (lt (f1) , lt (f3)) = lt (gcd (f1, f3)) .
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Note that

Sf1,f3 =
lcm (t1, t3)

lm (f1)
· f1 − lcm (t1, t3)

lm (f3)
· f3.

Let g = gcd (f1, f3), c1 = f1/g, and c3 = f3/g. Note that

lcm (t1, t3)
lm (f1)

=
t1t3

lm (f1) gcd (t1, t3)
=

t1t3
lm (f1) lt (g)

=
lt (c3)
lc (f1)

=
lm (c3)

lc (c3) lc (c1) lc (g)
lcm (t1, t3)

lm (f3)
=

t1t3
lm (f3) gcd (t1, t3)

=
t1t3

lm (f3) lt (g)
=

lt (c1)
lc (f3)

=
lm (c1)

lc (c1) lc (c3) lc (g)
.

Observe that −c3f1 + c1f3 = −lcm (f1, f3) + lcm (f1, f3) = 0. Thus

Sf1,f3 = +
lm (c3)

lc (c3) lc (c1) lc (g)
· f1 − lm (c1)

lc (c1) lc (c3) lc (g)
· f3

= − c3 − lm (c3)
lc (c3) lc (c1) lc (g)

· f1 +
c1 − lm (c1)

lc (c1) lc (c3) lc (g)
· f3

= h1f1 + h2f2 + h3f3

where h1 = − c3−lm(c3)
lc(c3)lc(c1)lc(g) and h2 = 0 and h3 = + c1−lm(c1)

lc(c1)lc(c3)lc(g) . Note

lt (h1) · lt (f1) ≺ lt (c3) · lt (f1) =
t3

lt (g)
· t1 =

t1t3
gcd (t1, t3)

= lcm (lt (f1) , lt (f3))

lt (h3) · lt (f3) ≺ lt (c1) · lt (f3) =
t1

lt (g)
· t3 =

t1t3
gcd (t1, t3)

= lcm (lt (f1) , lt (f3)) .

Thus (h1, h2, h3) is a representation of Sf1,f3 . Hence we have (Chain Condition). Thus,
the sufficiency side of Theorem “But not quite” has been proved. 2

4. Remarks

4.1. Comparison with minimal generating sets of syzygy modules

It is well-known that the set of all S-polynomials (critical pairs) can be viewed es-
sentially as a generating set of the syzygy module of the leading terms. Furthermore, it
is also well-known that Buchberger’s criteria essentially tell us that sometimes a proper
subset of the set of all critical pairs generates the syzygy module, allowing us to skip the
reduction of the remaining S-polynomials.

Since Theorem “But not quite” shows that we can sometimes skip an additional S-
polynomial reduction, one wonders whether this new criterion corresponds to minimal
generating sets of syzygy modules, where by “minimal” we mean that no proper subset
generates the module (Caboara et al., 2002).

The answer is, not always, as the following example illustrates. Consider the following
three terms:

x0x1, x0x2, x0x3.

Obviously, the syzygy module of the terms is generated by the following syzygies corre-
sponding to the S-polynomials

Σ12 =




x2

−x1

0


 , Σ23 =




0

x3

−x2


 , Σ13 =




x3

0

−x1


 .
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Inspection shows that the set S = {Σ12,Σ23, Σ13} is a minimal set of generators. However,
Theorem “But not quite” shows that the terms satisfy the chain condition. Thus, we could
skip an S-polynomial reduction that would not be discovered by computing a minimal
set of generators of the sygyzy module.

4.2. New questions

Theorems “Almost” and “But not quite” fix the number of leading terms at three.
We saw in Example 8 that this makes it difficult to apply Theorem “But not quite” in
many situations. It is well-known that Buchberger’s lcm criterion can be generalized to
more than three leading terms. Do Theorems “Almost” and “But not quite” generalize
to more than three leading terms? If so, how? It turns out that Theorem “Almost” has
a natural generalization. We do not yet know how Theorem “But not quite” generalizes,
and are currently pursuing the solution to this problem.

Other questions follow from asking how the additional criterion presented in this paper
could help an algorithm to compute a Gröbner basis. First, does the new criterion suggest
a different strategy for selecting critical pairs while computing a Gröbner basis? Second,
how many additional S-polynomial reductions could we expect to skip on average? At
this time, we have only preliminary answers to these questions.
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