John Perry

Introduction

The problem Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis Examples

Summary

Determinants in Wonderland

John Perry

Department of Mathematics, University of Southern Mississippi

MAA Local Meeting, Pensacola FL

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

John Perry

Introduction

The problem Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analys Examples

Summary

1 Introduction

The Problem Dodgson's method

2 Analysis

Why does Dodgson's method work? From Jacobi to Dodgson

3 A modified Dodgson's method Applying the analysis Examples

Outline

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

John Perry

Introduction

The problem

Dodgson's metho

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analys Examples

Summary

1 Introduction The Problem

Dodgson's method

2 Analysis

Why does Dodgson's method work? From Jacobi to Dodgson

A modified Dodgson's method Applying the analysis Examples

Outline

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

John Perry

Introduction

The problem

Dodgson's method

Analysis

- Why does Dodgson method work?
- From Jacobi to Dodgson
- A modified Dodgson's method
- Applying the analysis Examples
- Summary

• detA = ?

- Common approaches
 - Patterns
 - 2×2
 - 3 × 3
 - Expansion by cofactors
 - Triangulation/Gaussian elimination

Goal

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

John Perry

Introduction

The problem

Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis Examples

Summary

• detA = ?

- Common approaches
 - Patterns
 - 2×2

$$\left|\begin{array}{cc}1&2\\3&4\end{array}\right|=1\cdot4-3\cdot2$$

• 3×3

- Expansion by cofactors
- Triangulation/Gaussian elimination

Goal

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

John Perry

Introduction

The problem

Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis Examples

Summary

• detA = ?

- Common approaches
 - Patterns
 - 2×2
 - 3 × 3

$$\begin{vmatrix} -1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = (-1) \cdot 5 \cdot 9 + 2 \cdot 6 \cdot 7 + 3 \cdot 4 \cdot 8$$
$$-7 \cdot 5 \cdot 3 - 8 \cdot 6 \cdot (-1) - 9 \cdot 4 \cdot 2$$

- Expansion by cofactors
- Triangulation/Gaussian elimination

Goal

John Perry

Introduction

The problem

Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis Examples

Summary

• detA = ?

- Common approaches
 - Patterns
 - 2×2
 - 3 × 3
 - Expansion by cofactors

$$\begin{vmatrix} -1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = (-1)^{1+1} \cdot (-1) \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} + (-1)^{1+2} \cdot 2 \cdot \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + (-1)^{1+3} \cdot 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}$$

• Triangulation/Gaussian elimination

◆□▶ ◆□▶ ◆目▶ ◆目▼ 少へ⊙

Goal

John Perry

Introduction

The problem

Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis Examples

Summary

• detA = ?

- Common approaches
 - Patterns
 - 2×2
 - 3 × 3
 - Expansion by cofactors
 - Triangulation/Gaussian elimination

$$\begin{vmatrix} -1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = \begin{vmatrix} -1 & 2 & 3 \\ 0 & 13 & 18 \\ 0 & 22 & 30 \end{vmatrix} = \begin{vmatrix} -1 & 2 & 3 \\ 0 & 13 & 18 \\ 0 & 0 & -\frac{6}{13} \end{vmatrix} = -1 \cdot 13 \cdot \left(-\frac{6}{13}\right) = 6.$$

Goal

Drawbacks

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

Determinants in Wonderland

John Perry

Introduction

The problem

Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis Examples

Summary

• Patterns do not generalize:

$$\begin{vmatrix} -1 & 2 & 3 & 4 \\ 5 & 6 & 9 & 8 \\ 1 & 2 & 3 & 4 \\ -3 & 7 & -2 & 1 \end{vmatrix} = ?$$

- Expansion by cofactors: painful, error-prone, tedious
- Triangulation: not always easy; intermediate fractions

John Perry

Introduction

The problem

Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analys Examples

Summary

1 Introduction

The Problem Dodgson's method

2 Analysis

Why does Dodgson's method work? From Jacobi to Dodgson

3 A modified Dodgson's method Applying the analysis Examples

Outline

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

John Perry

Introduction

The problem

Dodgson's method

Analysis

Why does Dodgson' method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis Examples

Summary

Another way

▲□▶▲□▶▲□▶▲□▶ 三回■ のの()

Rev. Charles Dodgson

- AKA Lewis Caroll (*Alice in Wonderland, Through the Looking Glass, The Hunting of the Snark*)
- Mathematician, Oxford trained!
- Devised another method for evaluating determinants [1]
- Revisited in recent CMJ article [4]

John Perry

Introduction

The problem Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis Examples

Summary

Dodgson's Method.

• "Condensation": 2 × 2

$$M_3 = \left(\begin{array}{rrrr} -1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right)$$

• For i < n - 1, divide elements of M_i by interior of M_{i-2}

・

John Perry

Introduction

The problem Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the ana Examples

Summary

Dodgson's Method.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

• "Condensation": 2 × 2

$$M_{3} = \begin{pmatrix} -1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
$$M_{2} = \begin{pmatrix} \begin{vmatrix} -1 & 2 \\ 4 & 5 \end{vmatrix} & \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} \\ \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} & \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} \end{pmatrix} = \begin{pmatrix} -13 & -3 \\ -3 & -3 \end{pmatrix}$$

• For i < n-1, divide elements of M_i by interior of M_{i-2}

John Perry

Introduction

The problem Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis Examples

Summary

Dodgson's Method.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

• "Condensation": 2 × 2

• For i < n - 1, divide elements of M_i by interior of M_{i-2}

$$M_{3} = \begin{pmatrix} -1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
$$M_{2} = \begin{pmatrix} -13 & -3 \\ -3 & -3 \end{pmatrix}$$
$$M_{1} = \frac{30}{5} = 6$$

John Perry

Introduction

The problem Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis Examples

Summary

Dodgson's Method.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

• "Condensation": 2 × 2

• For i < n - 1, divide elements of M_i by interior of M_{i-2}

$$M_{3} = \begin{pmatrix} -1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
$$M_{2} = \begin{pmatrix} -13 & -3 \\ -3 & -3 \end{pmatrix}$$
$$M_{1} = \frac{30}{5} = 6$$

Nice and easy!

John Perry

Introduction

The problem

Dodgson's method

Analysis

Why does Dodgson' method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis Examples

Summary

Problem with Dodgson's Method

• Dividing elements \implies division by zero?

$$M_4 = \begin{pmatrix} -1 & 2 & 2 & 4 \\ 5 & 6 & 9 & 8 \\ 1 & 2 & 3 & 4 \\ -3 & 7 & -2 & 1 \end{pmatrix}$$
$$M_3 = \begin{pmatrix} -16 & 6 & -12 \\ 4 & 0 & 12 \\ 13 & -25 & 11 \end{pmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Partial fix

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

• Swap rows or columns...

$$M_4 = \begin{pmatrix} -1 & 2 & 2 & 4 \\ 5 & 6 & 9 & 8 \\ -3 & 7 & -2 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$
$$M_3 = \begin{pmatrix} -16 & 6 & -12 \\ 53 & -75 & 25 \\ -13 & 25 & -11 \end{pmatrix}$$

... no more zero!

• Drawbacks

- Lose a lot of information
- Which rows, columns to swap?

Determinants in Wonderland

John Perry

Introduction

The problem Dodgson's method

Analysis

- Why does Dodgson method work?
- From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis Examples

Summary

Partial fix

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

• Swap rows or columns...

$$M_4 = \begin{pmatrix} -1 & 2 & 2 & 4 \\ 5 & 6 & 9 & 8 \\ -3 & 7 & -2 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$
$$M_3 = \begin{pmatrix} -16 & 6 & -12 \\ 53 & -75 & 25 \\ -13 & 25 & -11 \end{pmatrix}$$

... no more zero!

• Drawbacks

- Lose a lot of information
- Which rows, columns to swap?

Determinants in Wonderland

John Perry

Introduction

The problem Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysi Examples

Summary

John Perry

Introduction

The problem Dodgson's method

Analysis

Why does Dodgson's method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analys Examples

Summary

Introduction The Problem Dodgson's method

2 Analysis Why does Dodgson's method work? From Jacobi to Dodgson

A modified Dodgson's method Applying the analysis Examples

Outline

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

John Perry

Introduction

The problem Dodgson's method

Analysis

Why does Dodgson's method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the ana Examples

Summary

Jacobi's Theorem

Theorem (Jacobi, 1833)

Let

- *M* be an $n \times n$ matrix;
- A be an $m \times m$ minor of M, where m < n;
- A' be the corresponding minor of the adjugate of M; and
- A^* the complementary $(n-m) \times (n-m)$ minor of M.

Then

$$\det A' = (\det M)^{m-1} \cdot \det A^*$$
 or $(\det M)^{m-1} = \frac{\det A'}{\det A^*}$.

How does this give us Dodgson's method?

John Perry

Introduction

The problem Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analy Examples

Summary

Introduction The Problem Dodgson's metho

2 Analysis

Why does Dodgson's method work? From Jacobi to Dodgson

A modified Dodgson's method Applying the analysis Examples

Outline

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

John Perry

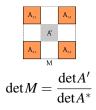
Introduction

The problem Dodgson's metho

Analysis

Why does Dodgson' method work?

From Jacobi to Dodgson


- A modified Dodgson's method
- Applying the analysi Examples

Summary

From Jacobi to Dodgson

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

- 3×3 matrix *M*
- 1×1 complementary minor A^* (interior!)
- 2×2 minor A

• adjugate from condensation

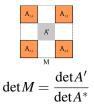
John Perry

Introduction

The problem Dodgson's metho

Analysis

Why does Dodgson' method work?


From Jacobi to Dodgson

- A modified Dodgson's method
- Applying the analysi Examples

Summary

From Jacobi to Dodgson

- 3×3 matrix *M*
- 1×1 complementary minor A^* (interior!)
- 2×2 minor A

• adjugate from condensation

▲□▶▲□▶▲□▶▲□▶ 三回■ のの()

John Perry

Introduction

The problem Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Summary

Theorem

After k successful iterations, Dodgson's Method produces the matrix

$$\begin{pmatrix} |M_{1...k+1,1...k+1}| & |M_{1...k+1,2...k+2}| & \cdots & |M_{1...k+1,n-k...n}| \\ |M_{2...k+2,1...k+1}| & |M_{2...k+2,2...k+2}| & \cdots & |M_{2...k+2,n-k...n}| \\ \vdots & \vdots & \ddots & \vdots \\ |M_{n-k...n,1...k+1}| & |M_{n-k...n,2...k+2}| & \cdots & |M_{n-k...n,n-k...n}| \end{pmatrix};$$

that is, a matrix whose entries are the determinants of all $(k+1) \times (k+1)$ submatrices of M.

Larger matrices?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

John Perry

Introduction

The problem Dodgson's metho

Analysis

- Why does Dodgson method work?
- From Jacobi to Dodgson
- A modified Dodgson's method Applying the anal
- ~

By induction...

- $M_{4} = \begin{pmatrix} -1 & 2 & 2 & 4 \\ 5 & 6 & 9 & 8 \\ 1 & 2 & 3 & 4 \\ -3 & 7 & -2 & 1 \end{pmatrix}$ $M_{3} = \begin{pmatrix} \begin{vmatrix} -1 & 2 \\ 5 & 6 \end{vmatrix} & \begin{vmatrix} 2 & 2 \\ 5 & 6 \end{vmatrix} & \begin{vmatrix} 2 & 2 \\ 6 & 9 \end{vmatrix} & \begin{vmatrix} 2 & 4 \\ 9 & 8 \end{vmatrix} \\ \begin{vmatrix} 5 & 6 \\ 1 & 2 \end{vmatrix} & \begin{vmatrix} 2 & 2 \\ 6 & 9 \end{vmatrix} & \begin{vmatrix} 9 & 8 \\ 3 & 4 \end{vmatrix} \\ \begin{vmatrix} 1 & 2 \\ -3 & 7 \end{vmatrix} & \begin{vmatrix} 2 & 3 \\ 7 & -2 \end{vmatrix} & \begin{vmatrix} 3 & 4 \\ -2 & 1 \end{vmatrix} \end{pmatrix} = \begin{pmatrix} -16 & 6 & -12 \\ 4 & 0 & 12 \\ 13 & -25 & 11 \end{pmatrix}$
 - Second condensation: 3 × 3 submatrices

• First condensation: 2×2 submatrices

• Third condensation: 4 × 4 submatrices

John Perry

Introduction

The problem Dodgson's method

Analysis

Why does Dodgson' method work?

From Jacobi to Dodgson

A modified Dodgson's method Applying the ana Examples

Summary

By induction...

• First condensation: 2×2 submatrices

• Second condensation: 3 × 3 submatrices

$$M_{4} = \begin{pmatrix} -1 & 2 & 2 & 4 \\ 5 & 6 & 9 & 8 \\ 1 & 2 & 3 & 4 \\ -3 & 7 & -2 & 1 \end{pmatrix}$$

$$M_{3} = \begin{pmatrix} -16 & 6 & -12 \\ 4 & 0 & 12 \\ 13 & -25 & 11 \end{pmatrix}$$

$$M_{2} = \begin{pmatrix} \begin{vmatrix} -1 & 2 & 2 \\ 5 & 6 & 9 \\ 1 & 2 & 3 \\ 5 & 6 & 9 \\ 1 & 2 & 3 \\ -3 & 7 & -2 \end{vmatrix} \begin{vmatrix} 2 & 2 & 4 \\ 6 & 9 & 8 \\ 2 & 3 & 4 \\ 7 & -2 & 1 \end{vmatrix} \end{pmatrix} = \begin{pmatrix} -4 & 8 \\ -50 & -100 \end{pmatrix}$$

• Third condensation: 4 × 4 submatrices

John Perry

Introduction

The problem Dodgson's method

Analysis

Why does Dodgson' method work?

From Jacobi to Dodgson

A modified Dodgson's method Applying the anal

Examples

Summary

By induction...

- First condensation: 2×2 submatrices
- Second condensation: 3×3 submatrices
- Third condensation: 4 × 4 submatrices

$$M_4 = \begin{pmatrix} -1 & 2 & 2 & 4 \\ 5 & 6 & 9 & 8 \\ 1 & 2 & 3 & 4 \\ -3 & 7 & -2 & 1 \end{pmatrix}$$
$$M_3 = \begin{pmatrix} -16 & 6 & -12 \\ 4 & 0 & 12 \\ 13 & -25 & 11 \end{pmatrix}$$
$$M_2 = \begin{pmatrix} -4 & 8 \\ -50 & -100 \end{pmatrix}$$
$$M_1 = \begin{vmatrix} -1 & 2 & 2 & 4 \\ 5 & 6 & 9 & 8 \\ 1 & 2 & 3 & 4 \\ -3 & 7 & -2 & 1 \end{vmatrix}$$

John Perry

Introduction

The problem Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis Examples

Summary

Introduction The Problem Dodgson's metho

Analysis

Why does Dodgson's method work? From Jacobi to Dodgson

3 A modified Dodgson's method Applying the analysis Examples

Outline

John Perry

Introduction

The problem Dodgson's metho

Analysis

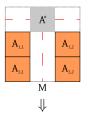
Why does Dodgson's method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis Examples

Summary



 $\sim \rightarrow$

An avenue out?

different A^*

different minor

John Perry

Introduction

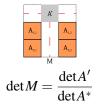
The problem Dodgson's metho

Analysis

Why does Dodgson' method work?

From Jacobi to Dodgson

A modified Dodgson's method


Applying the analysis Examples

Summary

Choosing a different minor

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

- 3×3 matrix $M, M_{2,2} = 0$
- 1×1 complementary nonzero minor A^* (non-interior!)
- 2×2 minor A

• adjugate from condensation

John Perry

Introduction

The problem Dodgson's metho

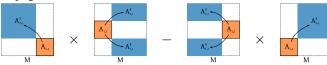
Analysis

Why does Dodgson' method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis


Summary

Choosing a different minor

- 3×3 matrix $M, M_{2,2} = 0$
- 1×1 complementary nonzero minor A^* (non-interior!)
- 2×2 minor A

• adjugate from condensation

▲□▶▲□▶▲□▶▲□▶ 三回■ のの()

John Perry

Introduction

The problem Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analys

Examples

Summary

Introduction The Problem Dodgson's method

2 Analysis

Why does Dodgson's method work? From Jacobi to Dodgson

3 A modified Dodgson's method Applying the analysis Examples

Outline

John Perry

Introduction

The problem Dodgson's metho

Analysis

Why does Dodgson's method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis

Examples

Summary

$$M_4 = \left(\begin{array}{rrrrr} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \end{array}\right)$$

• Dodgson's method fails

Easy example

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

John Perry

Introduction

The problem Dodgson's metho

Analysis

Why does Dodgsor method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis

Examples

Summary

$M_4 = \left(\begin{array}{rrrrr} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \end{array}\right)$

• Non-zero element above each zero \rightsquigarrow work around

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

Easy example

John Perry

Introduction

The problem Dodgson's methor

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis

Examples

Summary

$M_4 = \left(\begin{array}{rrrrr} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \end{array}\right)$

• Non-zero element above each zero \rightsquigarrow work around $M_{3} = \begin{pmatrix} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} \\ \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} \\ \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} & \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ -2 & 1 & -1 \\ 4 & -2 & 1 \end{pmatrix}$

Easy example

▲□▶▲□▶▲□▶▲□▶ 三回■ のの()

John Perry

Introduction

The problem Dodgson's method

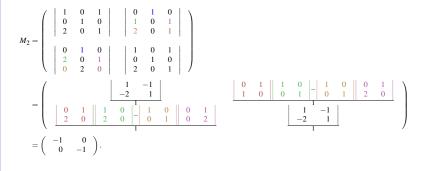
Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analys


Examples

Summary

$M_4 = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \end{pmatrix} \qquad M_3 = \begin{pmatrix} 1 & -1 & 1 \\ -2 & 1 & -1 \\ 4 & -2 & 1 \end{pmatrix}$

Easy example

• Non-zero element above each zero \rightsquigarrow work around

John Perry

Introduction

The problem Dodgson's method

Analysis

Why does Dodgsor method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis

Examples

Summary

$M_4 = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \end{pmatrix} \qquad M_3 = \begin{pmatrix} 1 & -1 & 1 \\ -2 & 1 & -1 \\ 4 & -2 & 1 \end{pmatrix}$

Easy example

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

• Non-zero element above each zero \rightsquigarrow work around

$$M_2 = \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)$$

 $M_1 = \frac{1}{1}$

John Perry

Harder Example

< □ ▶ < @ ▶ < E ▶ < E ▶ 된 = の < @

$$M_4 = \begin{pmatrix} -1 & 2 & 2 & 4 \\ 5 & 6 & 9 & 8 \\ 1 & 2 & 3 & 4 \\ -3 & 7 & -2 & 1 \end{pmatrix}$$

Why does Dodgson's method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis

Examples

Summary

John Perry

Introduction

The problem Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis

Examples

Summary

Harder Example

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$M_4 = \begin{pmatrix} -1 & 2 & 2 & 4 \\ 5 & 6 & 9 & 8 \\ 1 & 2 & 3 & 4 \\ -3 & 7 & -2 & 1 \end{pmatrix}$$

Encounter 0 at intermediate step:

$$M_3 = \left(\begin{array}{rrr} -16 & 6 & -20\\ 4 & 0 & 12\\ 13 & -25 & 11 \end{array}\right)$$

John Perry

Introduction

The problem Dodgson's metho

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis

Examples

Summary

$M_4 = \begin{pmatrix} -1 & 2 & 2 & 4 \\ 5 & 6 & 9 & 8 \\ 1 & 2 & 3 & 4 \\ -3 & 7 & -2 & 1 \end{pmatrix} \qquad M_3 = \begin{pmatrix} -16 & 6 & -20 \\ 4 & 0 & 12 \\ 13 & -25 & 11 \end{pmatrix}$

Harder Example

▲□▶▲□▶▲□▶▲□▶ 三回■ のの()

Non-zero above, so choose different 2×2 minor

$$M_{2} = \begin{pmatrix} -16 & 6 \\ 4 & 0 \\ \hline 6 & 9 \\ -1 & 2 & 2 \\ 5 & 6 & 9 \\ -3 & 7 & -2 \\ \end{bmatrix} \begin{pmatrix} 6 & -20 \\ 0 & 12 \\ \hline 9 \\ 6 & 9 \\ 7 & -2 & 1 \\ \hline 7 & -2 & 1 \\ \hline \\ 8 \\ -1 & 2 & 2 \\ 5 & 6 & 9 \\ -3 & 7 & -2 \\ \hline \\ 8 \\ 7 & -2 & 1 \\ \hline \\ 8 \\ 7 & -2 & 1 \\ \hline \\ 7 & -2$$

John Perry

Harder Example

Examples

$$M_4 = \begin{pmatrix} -1 & 2 & 2 & 4 \\ 5 & 6 & 9 & 8 \\ 1 & 2 & 3 & 4 \\ -3 & 7 & -2 & 1 \end{pmatrix} \qquad M_3 = \begin{pmatrix} -16 & 6 & -20 \\ 4 & 0 & 12 \\ 13 & -25 & 11 \end{pmatrix}$$

Non-zero above, so choose different 3×3 minor

 \mathbf{a}

$$M_2 = \left(\begin{array}{cccc} -4 & 8 \\ -1 & 2 & 2 \\ 5 & 6 & 9 \\ -3 & 7 & -2 \end{array} \middle| \begin{array}{c} 2 & 2 & 4 \\ 6 & 9 & 8 \\ 7 & -2 & 1 \end{array} \right)$$

Condense alternate minors

1

1

$$\begin{vmatrix} -1 & 2 & 2 \\ 5 & 6 & 9 \\ -3 & 7 & -2 \end{vmatrix} \rightarrow \begin{vmatrix} -16 & 6 \\ 53 & -75 \end{vmatrix} \rightarrow \frac{1200 - 318}{6} = 147$$
$$\begin{vmatrix} 2 & 2 & 4 \\ 6 & 9 & 8 \\ 7 & -2 & 1 \end{vmatrix} \rightarrow \begin{vmatrix} 6 & -20 \\ -75 & 25 \end{vmatrix} \rightarrow \frac{150 - 1500}{9} = -150$$

John Perry

Introduction

The problem

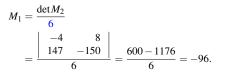
Analysis

Why does Dodgsor method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis


So

Examples

Summary

$M_{4} = \begin{pmatrix} -1 & 2 & 2 & 4 \\ 5 & 6 & 9 & 8 \\ 1 & 2 & 3 & 4 \\ -3 & 7 & -2 & 1 \end{pmatrix} \qquad M_{3} = \begin{pmatrix} -16 & 6 & -20 \\ 4 & 0 & 12 \\ 13 & -25 & 11 \end{pmatrix}$ $M_{2} = \begin{pmatrix} -4 & 8 \\ 147 & -150 \end{pmatrix}$

Harder Example

John Perry

Introduction

The problem Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis Examples

Summary

• Pros

- More matrices!
- Relatively easy
- Lots of reuse
- Cons
 - Identifying minors
 - Bad actors remain

Pros and Cons

John Perry

Introduction

The problem Dodgson's method

Analysis

Why does Dodgson method work?

From Jacobi to Dodgson

A modified Dodgson's method

Applying the analysis Examples

Summary

The end

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

Special thanks:

- Eve Torrence
- Deanna Leggett and Ashley Sanders (students)
- Lewis Carroll and the White Rabbit

John Perry

For Further Reading

Charles Lutwidge Dodgson.

Condensation of Determinants, being a new and brief method for computing their arithmetical values.

Some related works I

Proceedings of the Royal Society of London, 15:150–155, 1866.

🛸 Carl Gustav Jacob Jacobi.

De binis quibuslibet functionibus homogeneis secundi ordinis per substitutiones lineares in alias binas transformandis, quae solis quadratis variabilium constant; una cum variis theorematis de transformatione et determinatione integralium multiplicium.

Journal für die reine und angewandte Mathematik, 12:1-69, 1833.

John Perry

Appendix

For Further Reading

Some related works II

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

Recherches sur le calcul intégral et sur le système du monde. *Histoire de l'Académie Royale des Sciences*, pages 267–376, 1772.

Adrian Rice and Eve Torrence.

"Shutting up like a telescope": Lewis Carroll's "Curious" Condensation Method for Evaluating Determinants.

The College Math Journal, 38(2):85–95, 2007.