Efficiently swapping columns in the Macaulay matrix

John Perry

University of Southern Mississippi

February 5, 2014

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Overview

▲□▶▲□▶▲□▶▲□▶ □ のQで

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

1 From linear to non-linear algebra

2 Ordering columns of the Macaulay matrix

3 Finding orders efficiently

Outline

▲□▶▲□▶▲□▶▲□▶ □ のQで

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra

Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

1 From linear to non-linear algebra

2 Ordering columns of the Macaulay matrix

3 Finding orders efficiently

Linear algebra columns in the $x_1 + 7x_3 - 3x_4 + 12x_5 = 0$ $8x_1 + 4x_3 + 3x_4$ = 0 $-2x_1 + 6x_2$ = 12

$$x_1 + 7x_3 = 0$$

Questions:

- Do solutions exist?
- Dimension?

• etc.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Efficiently

swapping

Macaulav matrix John Perry

Linear: Vector spaces

Linear algebra

 $\begin{array}{rrrrr} x_1 &+7x_3 - 3x_4 + 12x_5 = 0\\ 8x_1 &+4x_3 + 3x_4 &= 0\\ -2x_1 + 6x_2 &= 12\\ x_1 &+7x_3 &= 0 \end{array}$

Vector space: add polynomials, multiply scalars

Rewrite as matrix:

 $\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & 1 \\ 1 & 7 & -3 & 12 & f_4 \\ 8 & 4 & 3 & f_3 \\ -2 & 6 & 12 & f_2 \\ 1 & 7 & f_1 \end{pmatrix}$ Solve? need "nice" form Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra

Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings Finding orders

efficiently Caboara's Criteria New criteria Effectiveness

Linear algebra

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra

Linear: Vector spaces Nonlinear: ideals

A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & 1 \\ 1 & 7 & -3 & 12 & f_4 \\ 8 & 4 & 3 & f_3 \\ -2 & 6 & 12 & f_2 \\ 1 & 7 & f_1 \end{pmatrix}$$

Vector space \implies Swap columns!
$$\begin{pmatrix} x_5 & x_4 & x_2 & x_3 & x_1 & 1 \\ 12 & -3 & 7 & 1 & f_4 \\ 3 & 4 & 8 & f_3 \\ 6 & -2 & 12 & f_2 \\ 7 & 1 & f_1 \end{pmatrix}$$

Nonlinear algebra

(日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra

Linear: Vector spaces

Nonlinear: ideals A distinction with a

Ordering columns of the Macaulay matrix Structure of orderings

Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

xy - 1 = 0 $x^2 + y^2 - 4 = 0$

Vector space Ideal: add, multiply polynomials

Efficiently Nonlinear algebra swapping columns in the Macaulav matrix xy - 1 = 0 $x^2 + y^2 - 4 = 0$ John Perry xy^3 x^3 x^2y xy^2 y^3 x^2 xy y^2 x v 1 xf_2 Nonlinear: ideals 1 1 1 1 -4 yf_2 1 -41 f_2 $y^2 f_1$ -1-1 xf_1 -1 yf_1

1

-1

••

••

1

Can we swap?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces

Nonlinear: ideals

A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

1 -4 1

Can we swap?

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals

A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings Finding orders

Caboara's Criteria New criteria Effectiveness

Conclusion

$$\left(\begin{array}{cccc}
x^2 y & y^3 & 1 \\
1 & 1 & -4 & yf_2 \\
1 & -1 & xf_1
\end{array}\right)$$

Why not? consider y > x

$$\left(\begin{array}{cccc}
y^3 & x^2y & 1 \\
1 & 1 & -4 & yf_2 \\
& 1 & -1 & xf_1
\end{array}\right)$$

・ロト・西ト・田・・田・ 日・ うらぐ

Efficiently No, actually! swapping columns in the Macaulav matrix Other rows non-nice John Perry xy^3 y^3 xy^2 x^3 x^2y y^2 xy x^2 \mathcal{V} x xf_2 Nonlinear: ideals 1 1 A distinction with a difference _4 yf_2 -4 f_2 $y^2 f_1$ -1 xf_1 yf_1 イロト 不得 トイヨト イヨト 二日

To sum up

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra

Linear: Vector spaces Nonlinear: ideals

A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings

Finding orders efficiently Caboara's Criteria New criteria

	structure	+	×	swap columns?
Linear	vec space	poly	const	yes
Nonlinear	ideal	poly	poly	no (not easily)

(日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

swapping columns in the Macaulay matrix

Efficiently

John Perry

From linear to non-linear algebra Linear: Vector spaces

A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

row-echelon matrix ↔ vector basis row-echelon Macaulay ↔ Gröbner basis

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals

A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings Finding orders

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

row-echelon matrix ↔ vector basis row-echelon Macaulay ↔ Gröbner basis

- "nice" form of input system
 - easily analyze solutions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

row-echelon matrix \iff vector basis row-echelon Macaulay \iff Gröbner basis

- "nice" form of input system
 - easily analyze solutions
- applications
 - commutative algebra, algebraic geometry, differential equations, ...
 - astronomy, robotics, physics, biochemistry, ...
 - coding theory, cryptanalysis, ...

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals

A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals

A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings Windiana ordering

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

row-echelon matrix \iff vector basis row-echelon Macaulay \iff Gröbner basis

- "nice" form of input system
 - easily analyze solutions
- applications
 - commutative algebra, algebraic geometry, differential equations, ...
 - astronomy, robotics, physics, biochemistry, ...
 - coding theory, cryptanalysis, ...
- "hard" to compute
 - worst case doubly exponential, average case "okay"
 - any tool to help is valuable!!!

Outline

▲□▶▲□▶▲□▶▲□▶ □ のQで

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix

Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

1 From linear to non-linear algebra

2 Ordering columns of the Macaulay matrix

3 Finding orders efficiently

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix

Structure of orderings

Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

Can we swap columns in Macaulay's matrix while row reducing?

(日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix

Structure of orderings

Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

Can we swap columns in Macaulay's matrix while row reducing? YES!!!

(Gritzmann & Sturmfels, 1993; Caboara, 1993)

(日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix

Structure of orderings

Finding orders efficiently Caboara's Criteria New criteria

Conclusion

Can we swap columns in Macaulay's matrix while row reducing? YES!!!

(Gritzmann & Sturmfels, 1993; Caboara, 1993)

How? (ibid)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix

Structure of orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

Can we swap columns in Macaulay's matrix while row reducing? YES!!!

(Gritzmann & Sturmfels, 1993; Caboara, 1993)

How? (ibid)

How, *efficiently?* Hmm.

How can we swap?

(日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix

Structure of orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

Definition

Admissible ordering:

• $\sigma \in (\mathbb{R}^+)^n$

•
$$\mathbf{x}^a < \mathbf{x}^b \iff \sigma \cdot a < \sigma \cdot b$$

How can we swap?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix

Structure of orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

Definition

Admissible ordering:

•
$$\sigma \in (\mathbb{R}^+)^n$$

• $\mathbf{x}^a < \mathbf{x}^b \iff \sigma \cdot a < \sigma \cdot b$

$$\sigma = (4, 1)$$

• $x > y^3$
• $x < y^5$

Important properties

 $t \neq u$? then t < u

A ロ ト 4 目 ト 4 目 ト 4 目 ト 9 Q Q

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix

Structure of orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

• compatible with divisibility

• $t \mid u \implies t \leq u$

• compatible with multiplication

• $t \leq u \implies tv \leq uv$

• well-ordering exists for any subset of monomials

Equivalent orderings

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix

Structure of orderings

Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

 $F = \{x^2 + y^2 - 4, xy - 1\}$

Equivalent orderings

 $F = \{x^2 + y^2 - 4, xy - 1\}$

Only two *effective* orderings: x > y and y > x.

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix

Structure of orderings

Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

・ロト・日本・山下・山下・山下・山下

Row reduction refines orderings

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix

Structure of orderings

Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

 $F = \{x^2 + y^2 - 4, xy - 1, y^3 + x - 4y\}$

Row reduction refines orderings

$$F = \{x^2 + y^2 - 4, xy - 1, y^3 + x - 4y\}$$

Cone splits! new ordering: $x > y^3$ but $x < y^4$

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix

Structure of orderings

Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

A vivid illustration

▲□▶★@▶★≧▶★≧▶ ≧ のへで

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix

Structure of orderings

Finding orders efficiently

Caboara's Criteria New criteria Effectiveness

Conclusion

Sage program...

Some orderings better than others

 $F = \{x^2 + y^2 - 4, xy - 1\}$

ordering	row operations	size of GB
(4,1)	5	4
(1,2)	4	3

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix

Structure of orderings

Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Some orderings better than others

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix

Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Ca	boara's	results

	standard		"optimal"		rel. size	
system	row ops	size	row ops	size	row ops	size
random binomials	1340	239	80	40	6%	17%
zero- dimensional	29	13	26	7	90%	54%
"Morgenstern"	26	13	1	5	4%	38%
Cyclic-5	42	20	7	10	17%	50%
Katsura-4	24	22	25	23	104%	105%

Finding orders

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

Goal: find, compare orders in cone Technique: linear programming! (details omitted)

うせん 同一人間を入却する (四) ふうく

"Optimal" ordering?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Metric: "Tentative" Hilbert function

intuitive: #mons of degree *d not* usable as pivots precise: complicated! see "commutative algebra"

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Metric: "Tentative" Hilbert function

intuitive: #mons of degree d not usable as pivots precise: complicated! see "commutative algebra"

$$HF_{I}(0) = 1$$

 $HF_{I}(1) = 2$
 $HF_{I}(2) = 3$
 $HF_{I}(3) = 2$
 $HF_{I}(4) = 2$

•

"Obvious" property

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Reducing Macaulay decreases Hilbert

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings

Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

"Obvious" property

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Reducing Macaulay decreases Hilbert

Strategy: Choose ordering that gives "smallest" HF.

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix

Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria

New criteria Effectiveness

Outline

▲□▶▲□▶▲□▶▲□▶ □ のQで

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently

Caboara's Criteria New criteria Effectiveness

Conclusion

1 From linear to non-linear algebra

2 Ordering columns of the Macaulay matrix

3 Finding orders efficiently

Bottleneck!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently

Caboara's Criteria New criteria Effectiveness

Conclusion

Many, large linear programs

- thousands, even millions of constraints
- solve many, many times
- crushes best linear solvers
- penalty outweighs benefits

Bottleneck!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently

Caboara's Criteria New criteria Effectiveness

Conclusion

Many, large linear programs

- thousands, even millions of constraints
- solve many, many times
- crushes best linear solvers
- penalty outweighs benefits

Can we eliminate most constraints, attempts to solve?

Divisibility Criterion

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings

tructure of orderings Computing orderings

Finding orders efficiently

Caboara's Criteria

New criteria Effectiveness

Conclusion

Recall ordering compatible with divisibility

• no constraints for divisors!

(Caboara, 1993)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Idea stay within current cone

• new constraints? only if consistent with old constraints

Committed to a cone?

Refining Criterion

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Contering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently

Caboara's Criteria

Effectiveness

Conclusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□♥

Idea stay within current cone

• new constraints? only if consistent with old constraints

Refine in current cone

Refining Criterion

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently

Caboara's Criteria New criteria

Effectiveness

Conclusion

(Caboara, 1993)

・ロト・日本・日本・日本・日本

Bottleneck persists!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently

Caboara's Criteria

New criteria Effectiveness

- LPs still large, numerous
- successful refinement not that common
- in optimal cone? refinement useless

Bottleneck persists!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently

Caboara's Criteria

New criteria Effectiveness

Conclusion

- LPs still large, numerous
- successful refinement not that common
- in optimal cone? refinement useless

How can we shut refiner on, off... reliably?

Disjoint Cones Criterion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

LP fails?

- new, old constraints: disjoint cones
 - remember new cone
 - discard future LPs contained in new cone

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently

Caboara's Criteria

New criteria Effectiveness

Disjoint Cones Criterion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

LP fails?

- new, old constraints: disjoint cones
 - remember new cone
 - discard future LPs contained in new cone
- eliminates many LPs (not all)
- expensive, prefer to avoid

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently

Caboara's Criteria

New criteria Effectiveness

Boundary Vectors Criterion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

Theorem

Leading monomials compatible with ordering have greater weight wrt boundary vectors.

- Convexity
- Corner Point Theorem

Boundaries: $\geq 3d$

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria

Effectiveness

Conclusion

many corners, "hard" to find

(cross-section)

・ロト・西ト・ヨト ・ヨト・ 白・ うらぐ

Boundaries: $\geq 3d$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria

Effectiveness

Conclusion

approximate: max, min vars

(cross-section)

Boundaries: underestimate

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria

New criteria Effectiveness

Conclusion

approximate: max, min vars

disallow some, allow only needed

Caboara's original examples

▲□▶▲□▶▲□▶▲□▶ □ のQ@

(Gröbner bases' sizes comparable to Caboara)

	linear programs						
	elimin	nated by:	comp	outed by:	relative		
system	disjoint boundary		old	new	size		
random binomials	0	22	25	10	40%		
zero- dimensional	0	64	20	10	50%		
"Morgenstern"	0	81	6	19	316%		
Cyclic-5	0	379	327	16	5%		
Katsura-4	5	439	108	37	34%		

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Caboara's original examples

(Gröbner bases' sizes comparable to Caboara)

	linear programs					
	elimin	ated by:	comp	outed by:	relative	
system	disjoint boundary		old	new	size	
random binomials	0	22	25	10	40%	
zero- dimensional	0	64	20	10	50%	
"Morgenstern"	0	81	6	19	316%	
Cyclic-5	0	379	327	16	5%	
Katsura-4	5	439	108	37	34%	

"Morgenstern"?!?

- approximate boundary vectors exclude good monomial(s)
- compute larger basis
 - more polys \Longrightarrow more mons \Longrightarrow more LPs
 - still smaller, more efficient than static

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Other examples

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of ordering

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

	linear programs					
	elimir	ated by:	compu	relative		
system	disjoint	boundary	old	new	size	
Cyclic-6	0 4,080		2,800	58	2%	
Cyclic-7	12	134,158	*	145	N/A	
Cyclic-6 homog	0	1,460	1,233	25	2%	
Cyclic-7 homog	0	62,706	*	38	N/A	

*terminated after growing to 1,000 constraints

But is it efficient?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

"Underestimate": max, min vars

- *O*(*n*) space
- O(n) time: change objective function, re-solve simplex
- Benefits far outweigh costs

Practically expensive?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Profiler data: Cyclic-6

Expensive routines: standard GB bottlenecks

- row reduction
 - ~ 50% time
- identifying rows for reduction
 33% time

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Practically expensive?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Profiler data: Cyclic-6

Expensive routines: standard GB bottlenecks

- row reduction
 - ~ 50% time
- identifying rows for reduction
 33% time

Inexpensive routines: dynamic techniques!

- computing orderings (simplex)
 ~ 4% time
- computing boundary vectors (simplex)
 ~.04% time
- applying boundary vectors ~.4%

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Outline

▲□▶▲□▶▲□▶▲□▶ □ のQで

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Contering columns of the Macaulay matrix Structure of orderings Computing orderings Finding orders

efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

1 From linear to non-linear algebra

2 Ordering columns of the Macaulay matrix

3 Finding orders efficiently

Observations

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

- Can swap columns, limited by
 - admissible orderings
 - previous orderings (Refining Criterion)
- Shut refiner off w/"high" certainty
- Restart refiner w/"high" certainty

Observations

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Conclusion

- Can swap columns, limited by
 - admissible orderings
 - previous orderings (Refining Criterion)
- Shut refiner off w/"high" certainty
- Restart refiner w/"high" certainty

Boundary vectors provide effective, efficient technique to identify orderings

Questions / future work

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Better boundary vectors?

- avoid "Morgenstern" penalty
- Other metrics of "good" basis?
 - size of reduction matrix? (more monomials?)
- Interaction w/ strategies for computation?
 - signature?
- Parallelism?

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

Ordering columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness

Thank you!

• LATEX

• Beamer

- People & mailing lists
 - Massimo Caboara
 - Nathann Cohen
 - Bernd Sturmfels
 - Help-GLPK, CBC digest, sage-support, sage-devel

Finis

Efficiently swapping columns in the Macaulay matrix

John Perry

From linear to non-linear algebra Linear: Vector spaces Nonlinear: ideals A distinction with a difference

columns of the Macaulay matrix Structure of orderings Computing orderings

Finding orders efficiently Caboara's Criteria New criteria Effectiveness