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BACKGROUND

• The Macaulay matrix is formed by coefficients of mono-
mial multiples of polynomials:

F = {x2+ y2− 4, xy − 1}
↓
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Gaussian reduction (“triangularization”) reveals fundamen-
tal polynomials, called a Gröbner basis. New polynomi-
als expand 〈col(p)〉 in monoid of monomials in n variables,
which is Noetherian, so expands only finitely many times.
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• A signature-based strategy reduces a row only from below.
– If p can appear at row τFi , with leftmost nonzero en-

try in column t , we write τFi ∈ row(p) and col(p) =
t . We record only the monomial multiple in row(p).

– The signature of p, written S(p), is the lowest row in
row(p). In the example above, S(−y3− x+4y) = xF2.

• A syzygy (h1, . . . , hm) corresponds to a dependence among
the rows of the matrix, and appears as empty rows of the tri-
angularized matrix:
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where h1 =−xy + 1 and h2 = x2+ y2− 4.

CHALLENGE

Efficiency: Algorithms F5 [4], G2V [5], “F5 revised” [1] use a
signature-based strategy, but select rows using different criteria, use
different notation, and are difficult to compare accurately.

Termination: Under observation, signature-based algorithms con-
sider only finitely many polynomials. It has not been clear why,
since they do not always expand 〈col(p)〉, or if there exist systems
where they consider infinitely many.

CONTRIBUTIONS TO THE THEORY

Main Results ([2, 3]): In a signature-based strategy,
1. triangularizing p in row σFi yields a syzygy if and only if

S(p)<σFi ;

2. if σFi ∈ row(p)∩ row(q), then
• we can use p or q to triangularize — even if
• this choice automatically triangularizes row σFi ;

3. if
• σFi = S(p) and u = col(p),
• τFi = S(q) and t = col(q), and
• τµ= σ and t v = u for some monomials µ, v,

then we need not triangularize p in row σFi , and we call
p signature redundant;

4. if
• σFi = S(p) = S(q),
• t = col(p) = col(q), and
• we can find a in the ground field such that col(p −

aq)< t but σFi ∈ row(p − aq),
then we can find r such that S(r )<σFi and t = col(r ).

Why? Signature strategy⇒ lower rows triangularized. Hence:
1. Triangularizing p in row σFi yields a syzygy H in row σFi

if and only if S(p) = S(p −H · F )<σFi .

2. We can find a in the ground field such that S(p−aq)<σFi ,
so p − aq appears in lower row, triangularizing to r ; p =
aq + r .

3. Choose µ ·τ = σ , t v = u. If µ> v, then p, q triangularize.
If µ ≤ v, find a such that S(p − aµq) < σFi , so p − aµq
appears in lower row, triangularizing to r ; p = aµq + r .

4. If we can find such a, we can also find b where r = p − b q ,
col(r ) = t , and S(r )<σFi .

COMMON ALGORITHM

The following generalized algorithm allows accurate comparison.

inputs generators ( f1, . . . , fi ) of ideal I ; fi+1 6∈ I
outputs Gröbner basis G of I +




fi+1
�

1. Let G =
�

(F1, f1) , . . . ,
�

Fi+1, fi+1
��

2. Let P =
�

lowest rows where elements of G triangularize
	

3. Let Syz=
¦

τFi+1 : τ = col( f j ), 1≤ j ≤ i
©

4. while P 6= ;
(a) Prune P using Syz and Result 1
(b) Let S =

�

rows of P in rows of least degree
	

(c) while S 6= ;
i. Prune S using Syz, G, and Results 1, 2, 3

ii. Pop, triangularize min σFi+1 in S: new poly r
iii. if syzygy, add σFi+1 to Syz
iv. if not syzygy and not signature redundant

Update P, S w/multiples of r
v. Append

�

σFi+1, r
�

to G
5. return

�

g :
�

σFi+1, g
�

∈G
	

Efficiency: The most significant difference lies in how algorithms
implement Result 2. Usually, [4] was most efficient, though [1]
sometimes bested it. We never found [5] to be fastest.

Termination: Map (τFi ,x
β1
1 · · · x

βn
n + · · · )

ϕ
→ (τ·xβ1

n+1 · · · x
βn
n+n); new

rows considered iff r non-signature-redundant iff 〈ϕ(G)〉 expands
in monoid of monomials in 2n variables; monoid is Noetherian,
so finitely many expansions, so finitely many new rows.
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