

Signature-based algorithms to compute Gröbner bases

John Perry john.perry@usm.edu

BACKGROUND

mial multiples of polynomials:

Christian Eder

ederc@mathematik.uni-kl.de

COMMON ALGORITHM

The following generalized algorithm allows accurate comparison.

inputs generators (f_1, \ldots, f_i) of ideal $I; f_{i+1} \notin I$ **outputs** Gröbner basis G of $I + \langle f_{i+1} \rangle$

- 1. Let $G = ((\mathbf{F}_1, f_1), \dots, (\mathbf{F}_{i+1}, f_{i+1}))$
- 2. Let $P = \{\text{lowest rows where elements of } G \text{ triangularize}\}$

3. Let
$$Syz = \{ \tau \mathbf{F}_{i+1} : \tau = \text{col}(f_j), 1 \le j \le i \}$$

4. while
$$P \neq \emptyset$$

- (a) Prune *P* using *Syz* and Result 1
- (b) Let $S = \{ rows of P in rows of least degree \}$
- (c) while $S \neq \emptyset$
 - i. Prune S using Syz, G, and Results 1, 2, 3
 - ii. Pop, triangularize min $\sigma \mathbf{F}_{i+1}$ in S: new poly r
 - iii. if syzygy, add $\sigma \mathbf{F}_{i+1}$ to Syz
 - iv. if not syzygy and not signature redundant Update P, S w/multiples of r
 - v. Append $(\sigma \mathbf{F}_{i+1}, r)$ to *G*
- 5. return $\{g : (\sigma F_{i+1}, g) \in G\}$

Efficiency: The most significant difference lies in how algorithms implement Result 2. Usually, [4] was most efficient, though [1] sometimes bested it. We never found [5] to be fastest.

Termination: Map $(\tau \mathbf{F}_i, x_1^{\beta_1} \cdots x_n^{\beta_n} + \cdots) \xrightarrow{\varphi} (\tau \cdot x_{n+1}^{\beta_1} \cdots x_{n+n}^{\beta_n})$; new rows considered iff r non-signature-redundant iff $\langle \varphi(G) \rangle$ expands in monoid of monomials in 2n variables; monoid is Noetherian, so finitely many expansions, so finitely many new rows.

ACKNOWLEDGMENTS AND REFERENCES

Joint work with Alberto Arri (Univ. Pisa, now Google Corp.) and Justin Gash (Franklin College). The Centre for Computer Algebra at TU Kaiserslautern graciously provided hospitality and advice.

References

- [1] Alberto Arri and John Perry, *The F5 Criterion revised*, Journal of Symbolic Computation **46** (2011), no. 2, 1017–1029.
- Christian Eder, Justin Gash, and John Perry, Modifying Faugère's F5 algorithm for termi-[2] nation, ACM Communications in Computer Algebra 45 (2011), no. 2, 70-89.
- [3] Christian Eder and John Perry, Signature-based algorithms to compute Gröbner bases, IS-SAC Proceedings, ACM Press, 2011, revised version at arxiv.org/abs/1101.3589.
- [4] Jean-Charles Faugère, A new efficient algorithm for computing Gröbner bases without reduction to zero F5, ISSAC Proceedings, ACM Press, 2002, revised version at fgbrs.lip6.fr/jcf/Publications/index.html, pp. 75-82.
- [5] Shuhong Gao, Yinhua Guan, and Frank Volny, A new incremental algorithm for computing Groebner bases, ISSAC Proceedings, ACM Press, 2010.

