Signature-based algorithms to compute Grobner bases
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BACKGROUND ) (CHALLENGE ) (COMMON ALGORITHM P
e The Macaulay matrix is formed by coefficients of mono- | | Efficiency: Algorithms F; [4], G*V [5], “F; revised” [1] use a | | The following generalized algorithm allows accurate comparison.
mial multiples ot polynomials: signature-based strategy, but select rows using ditferent criteria, use : EETRE?
F=1{x’+y"—4xy—1} ditferent notation, and are ditficult to compare accurately. inputs generators (..., /;) ot ideal I; f;, ¢ 1
- “ >4 o , , | outputs Grobner basis G of 7 + (f;, ;)
| lermination: Under observation, signature-based algorithms con-
sider only finitely many polynomials. It has not been clear why, L Let G=((Fy, 1) o5 (Fipps fin)) | |
/ \ since they do not always expand (col(p)), or if there exist systems 2. Let P = {IOWCSt rows where elements ot G triangular IZG}
1 » kwhere they consider infinitely many. ) 3. Let Syz = {TFi+1 r=col(f),1< < i}
4. while P £ 0
1 - G A |
1 1 CONTRIBUTIONS TO THE THEORY (a) Prune P using Syz and Result 1
(b) Let S = {rows of P in rows of least degree}
: 1 » Main Results ([2, 3]): In a signature-based strategy, (©) while S #0
' . A 1. triangularizing p in row oF. yields a syzygy if and only if i. Prune § using $yz, G, and Results 1, 2, 3
\ ' ' B 4 / S(p)<oF; 11 Pop, triangularize min ¢F,_, in §: new poly »
2. if oF, € row(p)Nrow(q), then iii. if syzygy, add oF; ., to Syz

Gaussian reduction (“triangularization”) reveals fundamen- tv. if not syzygy and not signature redundant

® we can use p or q to triangularize — even if

tal polynomials, called a Grobner basis. New polynomi- o this choice antomaticallv trianonlarizes row o F. Update P, § w/multiples of
als expand (col(p)) in monoid of monomials in 7 variables, ) & 12 v. Append (¢F,,,7)t0 G
which 1s Noetherian, so expands only finitely many times. 3. 4f 5. return {g: (oF,,,,g) € G}
e 0F. =S(p)and u = col(p), | - | - |
( 1 _q ) . ( 1 —1 4 xF,—yF, ) o tF. =8(q)and t = col(q), and Eﬁ?czency: The most significant ditference lies in .how algorithms
11 _4 1 4 o tu=0 and tv = for some monomials 11, v, implement Result 2. Usually, [4] was most etficient, though [1]

sometimes bested it. We never found [5] to be tastest.

’ then we need not triangularize p in row oF, and we call o 5 o 5 3

’ p signature redundant; lermination: Map (tF; x;™ xnﬁ ) = (T e x 1 ); new
; 4 if rows considered iff  non-signature-redundant itt (¢(G)) expands
; ' in monoid of monomials 1n 27 variables; monoid 1s Noetherian,
. o oF;=35(p)=5(q) so finitely many expansions, so finitely many new rows.

1 e t =col(p)=rcol(g), and = =

- ' - | @ D
e A signature-based strategy reduces a row only from below. o we can find a in the ground field such that col(p
ng gy e 1q) < ¢ but oF. € row(p —aq), ACKNOWLEDGMENTS AND REFERENCES
- can appear at row I ., with IeItmost nonzecro en- . . . . .
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