

The Rev. Charles Lutwidge Dodgson, better known as the author of "Alice in Wonderland," was also a mathematician. He developed an easy, elegant method to compute determinants of matrices. Unfortunately, the method often fails! This poster describes a modification of Dodgson's method that allows it to work for many more matrices—but still not all.

Background

Many important problems in science and engineering require us to evaluate the *determinant* of a matrix, such as, say

$$M = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 3 & 5 \\ 2 & 3 & 5 & 7 \end{pmatrix}.$$

Algebra students learn to compute determinants by *expanding cofactors*: [3] Example 1.

$$\det M = \det \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 3 & 5 \\ 2 & 3 & 5 & 7 \end{pmatrix}$$

$$= 1 \cdot \det \begin{pmatrix} 1 & 1 & 1 \\ 3 & 3 & 5 \\ 3 & 5 & 7 \end{pmatrix} - 2 \cdot \det \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 5 \\ 2 & 5 & 7 \end{pmatrix}$$

$$+ 3 \cdot \det \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 5 \\ 2 & 3 & 7 \end{pmatrix} - 4 \cdot \det \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 3 \\ 2 & 3 & 5 \end{pmatrix}$$

$$= [(3 \cdot 7 - 5 \cdot 5) - (3 \cdot 7 - 3 \cdot 5) + (3 \cdot 5 - 3 \cdot 3)]$$

$$- 2[(3 \cdot 7 - 5 \cdot 5) - (1 \cdot 7 - 2 \cdot 5) + (1 \cdot 5 - 2 \cdot 3)]$$

$$+ 3[(3 \cdot 7 - 3 \cdot 5) - (1 \cdot 7 - 2 \cdot 5) + (1 \cdot 3 - 2 \cdot 3)]$$

$$- 4[(3 \cdot 5 - 3 \cdot 3) - (1 \cdot 5 - 2 \cdot 3) + (1 \cdot 3 - 2 \cdot 3)]$$

$$= -2. \blacklozenge$$

This is tedious! Dodgson [1] discovered a simpler method to compute the determinant of an $n \times n$ matrix M, where $n \ge 3$:

- 1. Define the matrix $M_n := M$.
- 2. Define the matrix M_{n-1} by condensing M_n : take the determinant of every consecutive 2×2 submatrix of M_n .
- 3. Let i := n 2. Repeat the following until i = 0:
 - (a) Define the matrix N_i by condensing M_{i+1} .
 - (b) Define the matrix M_i by dividing each entry of N_i by the corresponding entry of the interior of $M_{i\perp 2}$.

Theorem 1 (Dodgson, 1866). *If there is no division by zero, then this method terminates at* i = 1. The single element of M_1 is det M.

Example 2. For the matrix *M* given above, we have:

$$M_{4} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 3 & 5 \\ 2 & 3 & 5 & 7 \end{pmatrix} \qquad M_{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -3 & 3 \\ -3 & 6 & -4 \end{pmatrix}$$
$$N_{2} = \begin{pmatrix} -4 & 6 \\ -3 & -6 \end{pmatrix} \implies M_{2} = \begin{pmatrix} \frac{-4}{2} & \frac{6}{3} \\ \frac{-3}{3} & \frac{-6}{3} \end{pmatrix} = \begin{pmatrix} -2 & 2 \\ -1 & -2 \end{pmatrix}$$
$$N_{1} = (6) \implies M_{1} = \begin{pmatrix} \frac{6}{-3} \end{pmatrix} = (-2). \blacklozenge$$

This is a lot easier!

DEANNA LEGGETT, JOHN PERRY, AND ASHLEY SANDERS Department of Mathematics

University of Southern Mississippi, Hattiesburg, MS 39406 Contact: john.perry@usm.edu

