

ABSTRACT

The dynamic algorithm to compute a Gröbner basis is nearly twenty years old, yet it seems to have arrived stillborn; aside from two initial publications, there have been no published followups. One reason for this may be that, at first glance, the added overhead seems to outweigh the benefit; the algorithm must solve many linear programs with many constraints. This paper describes two methods of reducing the cost substantially.

DYNAMIC ALGORITHM

Idea

Gritzmann and Sturmfels, 1993 [4]

- seek "optimal" ordering while computing basis
- measure "optimality" using Hilbert function

Pseudocode

inputs F, generators of polynomial ideal Ioutputs

- σ , monomial ordering
- G, Gröbner basis of I with respect to σ

do

- 1. Let $G = \{\}, P = \{(f, 0) : f \in F\}, \sigma$ any ordering
- 2. repeat while $P \neq \emptyset$
 - (a) Select $(p,q) \in P$ and remove it
 - (b) Let *r* be some σ -normal form of spoly(*p*,*q*) modulo *G*
 - (c) if $r \neq 0$
 - i. Add (g, r) to P for each $g \in G$
 - ii. Add r to G
 - (d) Select an ordering τ
 - (e) Add to *P* any (p,q) such that $p,q \in G \land \lim_{\sigma} (p) \neq \lim_{\tau} (p)$
 - (f) Let $\sigma = \tau$
- 3. return G, σ

First implementation, improvements

Caboara, 1993 [1]

• Compute feasibility, ordering w/linear program:

 $t > u \Rightarrow \omega(\mathbf{t} - \mathbf{u}) > 0$

- Consider only mutually indivisible monomials of r
- Keep previously computed leading monomials invariant ---> Eliminate step 2e, allow discarding useless pairs **BUT!** can increase effort in this case [3]
- Linear programs can grow unwieldy *BUT!* when?

Problem: How can we minimize number, size of linear programs?

Reducing the number and size of linear programs in a dynamic Gröbner basis algorithm John Perry

		EXPERIME	NTAL R	ESULT	rs.			
			1.				1	
			linear programs			•		
		C	prevented	by	nmbr	max	size	
		System	cor vec s		cmpta	size	ayn 24	
		Caboara I		0		22	34	
		Caboara 2		0	9	$\begin{vmatrix} 1/\\ 22 \end{vmatrix}$	28	
		Caboara 4	84	0	6	22		
		Caboara 5		0	6	22		
		Caboara 6	3	0	6	15		
		Caboara 8			4	9		
		Cyc-6	38,421	/62	1988	89		
		$Cyc-/\pi$	3,91/,43/	4,165	8,106	250	/5	
		Cyc-6 hom.	2,042	6	83	54	34	
		Cyc-/ hom.	88,//4	0	60	143	104	
		Kat-6	/51	2	43	5/		
		Kat-/	3,979		85	88	2/	
		Kat-6 hom.	533	0	23		22	
		Kat-/ hom.	16,556	8	132	222	49	
<i>con-</i> Ω.		 "cor vec's" + "trck" + "nmbr cmptd" = #lp's by divisation of the substantial reduction in number and size of linear prower determining feasibility, ordering no longer bottlend. Applied divisibility criterion (O(n²) comparisons) before vectors (O(n)). Reversing increases "cor vec's" and effect the Fine Print: Normal strategy. Results sensitive to strategy, first polynom. Sage-5.0 w/Cython (patched). C++ implementation planne. "trck" counts programs not computed b/c already rejected. Cyc-7 used min. degree strategy, corner vectors first. 						
		CITATIONS AND ACKNOWLEDGMENT						
		 Massimo Caboara, A dynamic algorithm for Gröbner basis computation, ISSAC '93, 1993, pp. 275–283. Massimo Caboara and John Perry, Reducing the number and size of linear program. Gröbner basis algorithm, in preparation. Oleg Golubitsky, Converging term order sequences and the dynamic Buchberg preprint received in private communication, in preparation. Peter Gritzmann and Bernd Sturmfels, Minkowski addition of polytopes: Compu- plexity and applications to Gröbner bases, SIAM J. Disc. Math 6 (1993), no. 2, 246- Teo Mora and Lorenzo Robbiano, The Gröbner fan of an ideal, Journal of Symbo- tion 6 (1988), 183–208. Thanks to Nathann Cohen for help with linear programming 						
	and to Massimo Caboara for insight and encouragem							

