Algorithm 1 F5

1: globals r, Rule, <
2: inputs
33 F=(f1,f2. ., fm) € R™ (homogeneous)
<, an admissible ordering
outputs
a Grobner basis of F' with respect to <
do
<pi=<<
Sort F' by increasing total degree, breaking ties by increasing leading mono-
mial

SR A

10:  Rule := List (List ())
11:  r:= List()
12 Append (Fi, fi-le(f1) ™) to r

130 Gprev = {1}
14:  B={f1}

15:  4:=2
16:  while i <m
17: Append (Fq;, fi-lc (fi)_1> tor

18: Geurr *= INCREMENTAL _BASIS (F5) (4, B, Gprev)
19: if I\ € Geurr such that Poly (M) =1

20: return {1}

21: Gprev = chrr

22: B:={Poly (A\): X € Gprev}

23: 1:=i+1

24: return B




Algorithm 2 INCREMENTAL _Basis (F5)

1: globals r, <p
2: inputs
3: 1N

4: B, a Grobner basis of (f1, f2,. .., fi—1) with respect to <r

5:  Gprev C N, indices in r of B

6: outputs

7: Geurr, indices in r of a Grobner basis of (f1, fa,. .., fi) with respect to <
8: do

9:

curr _idx = #r

100 Geurr := Gprey U {curr_idz}

11:  Append List () to Rule

122 P:= Ujerrev CRITICAL _ PAIR (curr_idz, j, 4, Gprev)
13:  while P # ()

14: d :=min{degt: (¢, k,u,l,v) € P}

15: Py :={(t,k,u,l,v) € P:d=degt}

16: P:=P\FPy

17: S := CoMPUTE_ SPoOLSs (Py)

18: R := REDUCTION (5, B, Gprev; Geurr)

19: for ke R

20: P:=PU (Ujeccu“- CriTiCAL_PAIR (k, 7, 1, Gprev))
21: Gewrr := Geurr U {k}

22:  return Geypr




Algorithm 3 CRITICAL PAIR

1: globals <p

, fi_1) w/respect to

2: inputs
3: k,fe€Nsuchthat 1 <k <{<#r
4: 1 €N
5. Gprev C N, indices in r of a Grébner basis of (fi, fa,. ..
<r
6: outputs
7. {(t,u,k,v,0)}, corresponding to a critical pair {k,[} necessary for
8: the computation of a Grobner basis of (f1, fa,- .., fi); 0 otherwise
9: do
10:  t := 1t (Poly (k))
11: g :=1t (Poly (¢))
12: t:=lem (tg, ty)
13: up = t/tk
14:  ug :=t/ty
15 F,, = Sig (k)
16:  poF,, :=Sig (¢)
17: if vy =7 and w; -y is top-reducible by Gprey
18: return ()
19:  if vy =7 and wug - po is top-reducible by Gprey
20: return ()
21:  if wy - Sig (k) < ug - Sig ()
22: Swap u; and us
23: Swap k and /¢
24:  return {(¢,k,u1, £, uz)}




Algorithm 4 CoMPUTE _SPoLs

1: globals r, <p

2: inputs

3: P, aset of critical pairs in the form (¢, &, u, ¢, v)

4: outputs

5: S, alist of indices in r of S-polynomials computed
6: for a Grobner basis of (f1, f2,..., fi)
7: do
8 S:=)

9: for (t,k,u,f,v) € P, from smallest to largest lcm

10: if not IS REWRITABLE (u, k) and not IS REWRITABLE (v, £)
11: Compute s, the S-polynomial of Poly (k) and Poly (¢)

12: Append (u - Sig (k) ,s) to r

13: ApD_RULE (u - Sig (k) , #L)

14: if s#£0

15: Append #rto S

16:  Sort S by increasing signature
17:  return S

Algorithm 5 REDUCTION

1: globals r, <
2: inputs
3: S, alist of indices of polynomials added to the generators G;
B, a Grobner basis of (f1, fo, ..., fi—1) with respect to <p
Gprev C N, indices in r corresponding to B
Geurr C N, indices in 7 of a list of generators of the ideal of (f1, fo,..., fi)
outputs
completed, a subset of G corresponding to (mostly) top-reduced polynomials
do
10: to_do:=S
11:  completed := 0
12:  while to _do # ()

R L A

13: Let k be the element of to_ do such that Sig (k) is minimal.

14: to_do:=to_do\{k}

15: h := Normal Form (Poly (k), B, <r)

16: e := (Sig (k) , h)

17: newly_ completed, redo := TOP_REDUCTION (k, Gprev, Gourr U completed)
18: completed := completed U newly completed

19: for j € redo

20: Insert j in to_do , sorting by increasing signature

21:  return completed




Algorithm 6 Tor REDUCTION

1: globals r, <p

2: inputs

3:  k, the index of a labeled polynomial

4: Gprev C N, indices in r of a Grobner basis of (f1, fa,..., fi—1) w/respect to
<r

5. Geurr C N, indices in 7 of a list of generators of the ideal of (f1, fo,..., fi)

6: outputs

7:  completed, which has value {k} if r; was not top-reduced and () otherwise

8:  to_ do, which has value

9: (0 if 75, was not top-reduced,

10: {k} if ry is replaced by its top-reduction, and

11: {k, #r} if top-reduction of r; generates a polynomial with a signature
larger than Sig (k).

12: do

13:  if Poly (k) =0

14: warn “Reduction to zero!”

15: return 0,0

16:  p:= Poly (k)
17: J :=Find_Reductor (k, Gprev, Gourr)

18 if J =1
= (Sig(k).p- (e @) ")
20: return {k},0

21:  Let j be the single element in J

22: ¢ := Poly (j)
23w = P

21:  c:=le(p)-(e(q) ™"

25: pi=p—c-u-q

26: ifp#£0

27: p:=p-(le(p)”

28:  if w - Sig (j) < Sig (k)

29: i, := (Sig (k) ,p)

30: return ), {k}

31:  else

32: Append (u - Sig (5),p) to r
33: ADD_RULE (u - Sig (j), #L)

34: return 0, {k, #r}




Algorithm 7 Find Reductor

1: globals <p

2: inputs

3:  k, the index of a labeled polynomial

4: Gprev C N, indices in r of a Groébner basis with respect to <7 of

(fla f27 . '7f’i—1)
Geurr C N, indices in r of a list of generators of the ideal of (f1, fo,..., fi)
outputs

J, where J = {j} if j € Geurr and Poly (k) is safely top-reducible by Poly (5);
otherwise J = ()

do

10:  t:=1t(Poly (k))
11:  for j € Geurr

12: t' =1t (Poly (j))

13: if t/ |t

14: w:i=t/t

15: wiF,, = Sig (4)

16: if u - Sig (j) # Sig (k) and not Is_ REWRITABLE (u, j) and u - y; is not
top-reducible by Gprev

17: return {j}

18: return (

Algorithm 8 Abp_RULE
: globals 7, Rule

inputs
uF,, the signature of 7y
k, the index of a labeled polynomial in r (or 0, for a phantom labeled poly-
nomial)
do
Append (u, k) to Rule,
7: return

=Wy 2

Algorithm 9 Is REWRITABLE

1: inputs

2 u, a power product

3:  k, the index of a labeled polynomial in r

4: outputs

5. true if w - Sig(k) is rewritable by another labeled polynomial (see
FIND_REWRITING)

do
j := FIND_ REWRITING (u, k)

8: return j#k




Algorithm 10 FIND REWRITING

1: globals Rule

2: inputs

3:  u, a power product

4:  k, the index of a labeled polynomial in r

5: outputs

6:  j, the index of a labeled polynomial in r such that if y;F,, = Sig (j)
and u;F,, = Sig (k), then v; = v and p; | w- pg
and r; was added to Rule,, most recently.

7: do

8: ,LL]CF,, = Slg (k)
9:  ctr:= #Rule,
10:  while ctr >0

11: (,uj,j) = Rulel,’ctr
12: if g we g
13: return j
14: ctr:=ctr—1

15: return k




