
Algorithm 1 F5

1: globals r, Rule, <T
2: inputs

3: F = (f1, f2, . . . , fm) ∈ Rm (homogeneous)
4: <, an admissible ordering
5: outputs

6: a Gröbner basis of F with respect to <
7: do

8: <T :=<
9: Sort F by increasing total degree, breaking ties by increasing leading mono-

mial
� Initialize the record keeping.

10: Rule := List (List ())
11: r := List ()
12: Append

(
F1, f1 · lc (f1)

−1
)
to r

� Compute the basis of 〈f1〉.
13: Gprev = {1}
14: B = {f1}

� Compute the bases of 〈f1, f2〉, . . . , 〈f1, f2, . . . , fm〉.
15: i := 2
16: while i ≤ m
17: Append

(
Fi, fi · lc (fi)

−1
)
to r

18: Gcurr := Incremental_Basis (F5) (i, B,Gprev)
19: if ∃λ ∈ Gcurr such that Poly (λ) = 1
20: return {1}
21: Gprev := Gcurr

22: B := {Poly (λ) : λ ∈ Gprev}
23: i := i+ 1
24: return B

1



2

Algorithm 2 Incremental_Basis (F5)

1: globals r, <T
2: inputs

3: i ∈ N
4: B, a Gröbner basis of (f1, f2, . . . , fi−1) with respect to <T
5: Gprev ⊂ N, indices in r of B
6: outputs

7: Gcurr, indices in r of a Gröbner basis of (f1, f2, . . . , fi) with respect to <T
8: do

9: curr_idx := #r

10: Gcurr := Gprev ∪ {curr_idx}
11: Append List () to Rule

12: P :=
⋃
j∈Gprev

Critical_Pair (curr_idx , j, i,Gprev)
13: while P 6= ∅
14: d := min {deg t : (t, k, u, `, v) ∈ P} � See Algorithm 3 for structure of p ∈

P
15: Pd := {(t, k, u, `, v) ∈ P : d = deg t}
16: P := P\Pd
17: S := Compute_SPols (Pd)
18: R := Reduction (S,B,Gprev,Gcurr)
19: for k ∈ R
20: P := P ∪

(⋃
j∈Gcurr

Critical_Pair (k, j, i,Gprev)
)

21: Gcurr := Gcurr ∪ {k}
22: return Gcurr



3

Algorithm 3 Critical_Pair

1: globals <T
2: inputs

3: k, ` ∈ N such that 1 ≤ k < ` ≤ #r

4: i ∈ N
5: Gprev ⊂ N, indices in r of a Gröbner basis of (f1, f2, . . . , fi−1) w/respect to

<T
6: outputs

7: {(t, u, k, v, `)}, corresponding to a critical pair {k, l} necessary for
8: the computation of a Gröbner basis of (f1, f2, . . . , fi); ∅ otherwise
9: do

10: tk := lt (Poly (k))
11: t` := lt (Poly (`))
12: t := lcm (tk, t`)
13: u1 := t/tk
14: u2 := t/t`
15: µ1Fν1 := Sig (k)
16: µ2Fν2 := Sig (`)
17: if ν1 = i and u1 · µ1 is top-reducible by Gprev � Stegers checks by Gν1+1

18: return ∅
19: if ν2 = i and u2 · µ2 is top-reducible by Gprev � Stegers checks by Gν2+1

20: return ∅
� A minor optimization is to check Is_Rewritable here

21: if u1 · Sig (k) ≺ u2 · Sig (`) � Faugère's writeup compares Sig(k) ≺ Sig(`).
22: Swap u1 and u2

23: Swap k and `
24: return {(t, k, u1, `, u2)}



4

Algorithm 4 Compute_SPols

1: globals r, <T
2: inputs

3: P , a set of critical pairs in the form (t, k, u, `, v)
4: outputs

5: S, a list of indices in r of S-polynomials computed
6: for a Gröbner basis of (f1, f2, . . . , fi)
7: do

8: S := ()
� Faugère and Stegers do not indicate that one should sort P , but perfor-
mance su�ers if not.
� For the example in Faugère's paper, 8 polynomials would be computed,
not 7.

9: for (t, k, u, `, v) ∈ P , from smallest to largest lcm
10: if not Is_Rewritable (u, k) and not Is_Rewritable (v, `)
11: Compute s, the S-polynomial of Poly (k) and Poly (`)
12: Append (u · Sig (k) , s) to r � Stegers writes Sig (`).
13: Add_Rule (u · Sig (k) ,#L)
14: if s 6= 0
15: Append #r to S
16: Sort S by increasing signature
17: return S

Algorithm 5 Reduction

1: globals r, <T
2: inputs

3: S, a list of indices of polynomials added to the generators Gi
4: B, a Gröbner basis of (f1, f2, . . . , fi−1) with respect to <T
5: Gprev ⊂ N, indices in r corresponding to B
6: Gcurr ⊂ N, indices in r of a list of generators of the ideal of (f1, f2, . . . , fi)
7: outputs

8: completed, a subset of G corresponding to (mostly) top-reduced polynomials
9: do

10: to_do := S
11: completed := ∅
12: while to_do 6= ()
13: Let k be the element of to_do such that Sig (k) is minimal.
14: to_do := to_do\ {k}
15: h := Normal_Form (Poly (k) , B,<T )
16: rk := (Sig (k) , h)
17: newly_completed, redo := Top_Reduction (k,Gprev,Gcurr ∪ completed)
18: completed := completed ∪ newly_completed

� Faugère and Stegers both write to_do := to_do ∪ redo,
� but to_do is not a set, and for e�ciency needs to be sorted.

19: for j ∈ redo

20: Insert j in to_do , sorting by increasing signature
21: return completed



5

Algorithm 6 Top_Reduction

1: globals r, <T
2: inputs

3: k, the index of a labeled polynomial
4: Gprev ⊂ N, indices in r of a Gröbner basis of (f1, f2, . . . , fi−1) w/respect to

<T
5: Gcurr ⊂ N, indices in r of a list of generators of the ideal of (f1, f2, . . . , fi)
6: outputs

7: completed, which has value {k} if rk was not top-reduced and ∅ otherwise
8: to_do, which has value
9: ∅ if rk was not top-reduced,

10: {k} if rk is replaced by its top-reduction, and
11: {k,#r} if top-reduction of rk generates a polynomial with a signature

larger than Sig (k).
12: do

13: if Poly (k) = 0 � This condition should be false if the inputs are a regular
sequence.

14: warn �Reduction to zero!�
15: return ∅, ∅
16: p := Poly (k)
17: J := Find_Reductor (k,Gprev,Gcurr)
18: if J = ∅
19: rk :=

(
Sig (k) , p · (lc (p))−1

)
20: return {k} , ∅

� J 6= ∅, so it is safe to top-reduce.
21: Let j be the single element in J
22: q := Poly (j)
23: u := lt(p)

lt(q)

24: c := lc (p) · (lc (q))−1

25: p := p− c · u · q
26: if p 6= 0
27: p := p · (lc (p))−1

28: if u · Sig (j) ≺ Sig (k)
29: rk := (Sig (k) , p)
30: return ∅, {k}
31: else

32: Append (u · Sig (j) , p) to r

33: Add_Rule (u · Sig (j) ,#L)
� Faugère writes ∅, {k, j} below, but Poly (#L) needs top-reduction, not
Poly (j).

34: return ∅, {k,#r}



6

Algorithm 7 Find_Reductor

1: globals <T
2: inputs

3: k, the index of a labeled polynomial
4: Gprev ⊂ N, indices in r of a Gröbner basis with respect to <T of

(f1, f2, . . . , fi−1)
5: Gcurr ⊂ N, indices in r of a list of generators of the ideal of (f1, f2, . . . , fi)
6: outputs

7: J , where J = {j} if j ∈ Gcurr and Poly (k) is safely top-reducible by Poly (j);
8: otherwise J = ∅
9: do

10: t := lt (Poly (k))
11: for j ∈ Gcurr

12: t′ = lt (Poly (j))
13: if t′ | t
14: u := t/t′

15: µjFνj := Sig (j)
16: if u · Sig (j) 6= Sig (k) and not Is_Rewritable (u, j) and u · µj is not

top-reducible by Gprev

17: return {j}
18: return ∅

Algorithm 8 Add_Rule

1: globals r, Rule
2: inputs

3: µFν , the signature of rk
4: k, the index of a labeled polynomial in r (or 0, for a phantom labeled poly-

nomial)
5: do

6: Append (µ, k) to Ruleν
7: return

Algorithm 9 Is_Rewritable

1: inputs

2: u, a power product
3: k, the index of a labeled polynomial in r

4: outputs

5: true if u · Sig (k) is rewritable by another labeled polynomial (see
Find_Rewriting)

6: do

7: j := Find_Rewriting (u, k)
8: return j 6= k



7

Algorithm 10 Find_Rewriting

1: globals Rule

2: inputs

3: u, a power product
4: k, the index of a labeled polynomial in r

5: outputs

6: j, the index of a labeled polynomial in r such that if µjFνj = Sig (j)
and µjFνj = Sig (k), then νj = νk and µj | u · µk
and rj was added to Ruleνk

most recently.
7: do

8: µkFν := Sig (k)
9: ctr := #Ruleν

10: while ctr > 0
11: (µj , j) := Ruleν,ctr
12: if µj | u · µk
13: return j
14: ctr := ctr− 1
15: return k


