

Understanding and Implementing F5

John Perry

john.perry@usm.edu

University of Southern Mississippi

Understanding F5

- Description
- Criteria
- Proofs

Implementing F5

- Maple, Singular
- Relation to Buchberger's Criteria
- Some optimizations

- challenge!
- compare with other criteria
 - Buchberger criteria
 - Pivoting, Extended First Criteria
- open source / something to work with

Understanding F5

BA (1965) GB algorithm

GM (1988) fast GB algorithm

- selection strategy: normal
- near-optimal use of Buchberger's Criteria

Introduction

F4 (1999) FAST GB algorithm

- selection strategy: increasing total degree
- sparse linear algebra

F5 (2002) FAAAAAAST GB algorithm (sometimes*)

incremental selection strategy

$$(f_1), (f_1, f_2), \dots, (f_1, f_2, \dots, f_m)$$

- new criteria
 - Buchberger criteria disregarded
- \bigcirc regular sequence \Longrightarrow no reduction to zero

*"sometimes": If close to GB, and most real-world systems in engineering are close to GB. (Faugère)

Introduction

F4 (1999) FAST GB algorithm

well understood

many implementations, widely available

F5 (2002) FAAAAAAST GB algorithm (sometimes)

not well understood

 \bigcirc few implementations (5)*

• fewer work

*Stegers' count, (mid-2005)

Introduction

- 2002 paper "limited length" >>> algorithm vs. proofs?
 - full description of algorithm
 - sketch of proofs
- 2002—2007 problems solved w/F5
 - no new description of algorithm
 - no proofs
- 2007 HDR? not in wide circulation

Idea

Linear system:

$$f_1 = 2x + 3y - 8$$
$$f_2 = 4x + 5y - 12$$

Idea

Linear system:

$$\left(\begin{array}{ccc}
2 & 3 & -8 \\
4 & 5 & -12
\end{array}\right)$$

Linear system:

$$\left(\begin{array}{ccc}
2 & 3 & -8 \\
4 & 5 & -12 \\
& 1 & -4
\end{array}\right)$$

$$(f_3 = 2f_1 - f_2)$$

Idea

Linear system:

$$\begin{pmatrix}
2 & 3 & -8 \\
4 & 5 & -12 \\
1 & -4
\end{pmatrix}$$

Moral:

- $f_3 = 2f_1 f_2 \Leftrightarrow \text{discard } f_1 \text{ or } f_2 \text{ from matrix}$
- linear dependence $\leadsto f_2$ is rewritable by f_3
- R criterion

1

Linear to non-linear

Compute GB ⇔ Triangularize Sylvester submatrix (Lazard, 1983)

- \bigcirc S-poly \longleftrightarrow two rows needing cancellation

$$\begin{pmatrix}
x^3 & x^2y & xy^2 & y^3 & x^2 & xy & y^2 & x & y & 1 \\
1 & & & -1 & & xf_1 \\
1 & & & -1 & & yf_1 \\
1 & & & -1 & & xf_2 \\
1 & & & & -1 & & yf_2 \\
1 & & & & & -1 & f_1 \\
1 & & & & & -1 & f_2
\end{pmatrix}$$

$$\begin{pmatrix} x^{3} & x^{2}y & xy^{2} & y^{3} & x^{2} & xy & y^{2} & x & y & 1 \\ 1 & & & -1 & & xf_{1} \\ & 1 & & & -1 & & yf_{1} \\ & & & & 1 & & & 1 \\ & & & & & 1 & & & yf_{2}f_{3} \\ & & & 1 & & & & -1 & & yf_{2} \\ & & & 1 & & & & -1 & f_{1} \\ & & & & 1 & & & -1 & f_{2} \end{pmatrix}$$

$$\begin{pmatrix} x^3 & x^2y & xy^2 & y^3 & x^2 & xy & y^2 & x & y & 1 \\ 1 & & & & -1 & & xf_1 \\ & 1 & & & & -1 & & yf_1 \\ & 1 & & & & -1 & & yf_2 \\ & & 1 & & & & -1 & f_1 \\ & & 1 & -1 & & & & xf_3 \\ & & 1 & & & & -1 & f_2 \\ & & & 1 & -1 & & & yf_3 \\ & & & 1 & -1 & & f_3 \end{pmatrix}$$

$$\begin{pmatrix} x^{3} & x^{2}y & xy^{2} & y^{3} & x^{2} & xy & y^{2} & x & y & 1 \\ 1 & & & & -1 & & xf_{1} \\ 1 & & & & -1 & & yf_{1} \\ & 1 & & & -1 & & yf_{2} \\ & & 1 & & & -1 & f_{1} \\ & & 1 & -1 & & & xf_{3} \\ & & 1 & & & -1 & f_{2} \\ & & & 1 & & & -1 & yf_{3}f_{4} \\ & & & & 1 & -1 & & f_{3} \end{pmatrix}$$

$$\begin{pmatrix} x^3 & x^2y & xy^2 & y^3 & x^2 & xy & y^2 & x & y & 1 \\ 1 & & & & -1 & & xf_1 \\ & 1 & & & & -1 & & yf_1 \\ & 1 & & & & -1 & & yf_2 \\ & & 1 & & & -1 & f_1 \\ & & 1 & & & & xf_3 \\ & & & 1 & & & -1 & f_2 \\ & & & & 1 & & & -1 & f_4 \\ & & & & 1 & -1 & & f_3 \end{pmatrix}$$

Example: $f_1 = x^2 - 1$, $f_2 = xy - 1$

$$\begin{pmatrix} x^3 & x^2y & xy^2 & y^3 & x^2 & xy & y^2 & x & y & 1 \\ 1 & & & & -1 & & xf_1 \\ & 1 & & & & -1 & & yf_1 \\ & & 1 & & & -1 & & yf_2 \\ & & & 1 & & & -1 & f_1 \\ & & & 1 & & & -1 & f_2 \\ & & & & 1 & & & -1 & f_4 \\ & & & & & 1 & -1 & & f_3 \end{pmatrix}$$

$$f_5 = f_1 - x f_3$$

*Note $f_5 = f_2 \rightsquigarrow$ no new info $\rightsquigarrow f_1 - xf_3$ "useless"

Example: $f_1 = x^2 - 1$, $f_2 = xy - 1$

Example:
$$f_1 = x^2 - 1$$
, $f_2 = xy - 1$

$$\begin{pmatrix} x^3 & x^2y & xy^2 & y^3 & x^2 & xy & y^2 & x & y & 1 \\ 1 & & & -1 & & xf_1 \\ & 1 & & & -1 & & yf_1 \\ & & 1 & & & -1 & & yf_2 \\ & & & 1 & & & -1 & f_2 \\ & & & 1 & & & -1 & f_4 \\ & & & 1 & & -1 & & f_3 \end{pmatrix}$$

Higher order cancellations also useless.

Basis: $G = \{f_1, f_2, f_3, f_4\} \rightsquigarrow \text{Reduced basis: } R = \{f_3, f_4\}$

Signatures: *multiplier* and *index*

$$f_{3} = yf_{1} - xf_{2}$$

$$f_{4} = f_{1} - xf_{3}$$

$$= f_{1} - x(yf_{1} - xf_{2})$$

$$= (-xy + 1)f_{1} + x^{2}f_{2}$$

$$f_{5} = f_{2} - yf_{3}$$

$$= f_{2} - y(yf_{1} - xf_{2})$$

$$= -y^{2}f_{1} + (xy + 1)f_{2}$$

Signature

- "leading term" of representation
- rewritable ** linear dependence
- \bigcirc remainders (f_3, f_4, f_5) not rewritable
- respect the signatures!!!
 - consider all cancellations in Syl
 - avoid cancellations that might affect signature
 - top-reduction: new polynomial?

Summary of idea

- compute GB triangularize Syl
- R criterion: older rows → newer rows
- signatures: track linear dependencies

Basic description of algorithm

- compute GB of $(f_1, f_2) \leadsto G_2 = (g_1, g_2, ..., g_{m_2})$
- \bigcirc compute GB of (f_1, f_2, f_3)
 - same as GB of $(g_1, g_2, ..., g_{m_2}, f_3)$ •• $G_3 = (g_1, g_2, ..., g_{m_3})$
- iterate: after computing G_i , compute GB of $(g_1, g_2, \dots, g_{m_i}, f_{i+1})$ 1 < i < m
- Use signatures to avoid linear dependencies / useless cancellations

Question: Could we detect $f_1 - x f_3 \xrightarrow{*} 0$?

Answer: Principal Syzygies (PS)

$$f_1 f_2 - f_2 f_1 = 0$$

Sums of monomial multiples of f_1 , f_2 \rightsquigarrow linear dependence in Sylvester matrix

New criterion

Example:

$$f_1 - xf_3 = (-xy + 1)f_1 + x^2f_2$$
.

But

$$f_1 f_2 - f_2 f_1 = 0 \Longrightarrow (x^2 - 1) f_2 - (xy - 1) f_1 = 0$$

$$\Longrightarrow x^2 f_2 = (xy - 1) f_1 + f_2.$$

Thus

$$f_1 - xf_3 = (-xy + 1)f_1 + [(xy - 1)f_1 + f_2] = 1f_2.$$

Lowered signature: already considered any cancellations.

Theorem

Integrate R Criterion with PS criterion: Theorem. For $G_{\text{prev}} \subset G$, suppose

- $igspace G_{\text{prev}}$ is a Gröbner basis of $(f_1, f_2, \dots, f_{m-1})$, and
- for all $1 \le i < j \le m$ such that $S(g_i, g_j) = ug_i vg$ and $g_i \in (f_1, ..., f_m) \setminus (f_1, ..., f_{m-1})$ we have (A) or (B) or (C) where
 - (A) $u g_i$ or $v g_j$ has index m and satisfies PS wrt G_{prev} ;
 - (B) ug_i or vg_j satisfies \mathbb{R} ;
 - (C) $S\left(g_i,g_j\right) \xrightarrow{*} 0$.

Then G is a Gröbner basis of $(f_1, f_2, ..., f_m)$.

Why? sketch

$$S := S(g_i, g_j) = \sum_{p \in F} h_p p$$

- (A) $\Longrightarrow \exists \text{syzygy } \sigma \text{ s.t. } S = S \sigma \text{ has lower signature}$
- (B) $\Longrightarrow \exists \text{syzygy } \sigma \text{ s.t. } S = S \sigma \text{ and}$ rewritable *S*-polys have lower signature
 - \bigcirc new rep \leadsto new cancellations? \leadsto new S-polys
 - \bigcirc new S-polys satisfy (A), (B), or (C), repeat
 - (A), (B), (C) never increase signature
 - (A), (B) decrease signature of rewritable
 - (C) lowers lcms
 - finitely many S-polys \Longrightarrow finitely many signatures \leadsto "decrease" signature until no rewritable S-polys \Longrightarrow all must satisfy $(C) \Longrightarrow GB$

Why? sketch

$$S\left(g_{i},g_{i}\right) = b_{1}^{(1)}f_{1} + \dots + b_{m}^{(1)}f_{m}$$

$$\downarrow (A), (B), (C)$$

$$S\left(g_{i},g_{j}\right) = \mu_{1}S\left(g_{i_{1}},g_{j_{1}}\right) + b_{1}^{(2)}g_{1} + \dots + b_{m}^{(2)}g_{m} \quad \exists \mu_{1}$$

$$\downarrow$$

$$\vdots$$

$$S\left(g_{i},g_{j}\right) = \sum \mu_{\lambda}S\left(g_{i_{\lambda}},g_{j_{\lambda}}\right)$$

Why? sketch

(Perry)
$$S\left(g_{i},g_{i}\right) = b_{1}^{(1)}f_{1} + \dots + b_{m}^{(1)}f_{m}$$

$$\downarrow (A), (B), (C)$$

$$S\left(g_{i},g_{i}\right) = b_{1}^{(2)}g_{1} + \dots + b_{m}^{(2)}g_{m}$$

$$\vdots$$

$$S\left(f_{i},f_{j}\right) = b_{1}^{(r)}g_{1} + \dots + b_{m}^{(r)}g_{m}$$

$$\text{It}\left(b_{i}^{(r)}g_{i}\right) \preceq \text{It}\left(S\left(f_{i},f_{j}\right)\right) \forall i = 1,2,\dots,m$$

Implementing F5

- understanding?
- pseudocode difficult to follow
 - unfamiliar notation
 - fatal & misleading errors
 - complex: subalgorithms, different cases
- some systems work with a broken implementation
 - false sense of confidence...
 - "stages interdependent" (Stegers)

Maple implementation

2007 Modification of "traditional" Buchberger algorithm Maple programming language (Faugère: C) excruciatingly slow

Faugère: "very easy"

Stegers (MAGMA): "considerable effort"

Perry: months

pseudocode & commentary:

http://www.math.usm.edu/perry/Research/F5Pseudocode.pdf

Maple implementation

2008 Slight modification to use matrix not really F4-ish slower!!!

gave up

Singular implementation

2008 basic modification of "traditional" Buchberger algorithm

Singular programming language

much faster than Maple

Cyclic-6: <3 minutes vs. >15 minutes

two days' work (correct pseudocode helps)

to-do move to kernel

sparse linear algebra?

compiled C++ vs. interpreted Singular

Buchberger's Criteria?

Sometimes $BC \Longrightarrow (PS \text{ or } R)$

but not always!

Question: Can we improve F5 using BC?

Buchberger's Criteria?

Sometimes $BC \Longrightarrow (PS \text{ or } R)$

but not always!

Question: Can we improve F5 using BC?

NO

۰

Buchberger's Criteria

Example: (\mathbb{Z}_{29})

$$f_1 = 3x^4y + 18xy^4 + 4x^3yz + 20xy^3z + 3x^2z^3$$

$$f_2 = 3x^3y^2 + 7x^2y^3 + 24y^2z^3$$

$$f_3 = 12xy^4 + 17x^4z + 27y^4z + 11x^3z^2$$

 $S(f_1, f_4)$ "caught" by Buchberger's 2nd Criterion (via f_6) **BUT!**

skipping $S(f_1, f_4)$ does *not* give a Gröbner basis

- 28 polynomials in result (vs. 30 if no skip)
- 66 S-polynomials do not reduce to zero

Buchberger's Criteria

Why fail?

- \bigcirc certainly $S(f_1, f_4)$ should reduce to zero
 - $S(f_1, f_6)$, $S(f_4, f_6)$ reduce to zero
 - \bullet distinct lcms \Longrightarrow no "three-way trap"
- triangularization: missed step!
 - Buchberger's Criteria ignore signature
 - signatures $x^2 z f_1$ and $y^3 f_2$
 - neither signature is considered if we skip
 - top-reduction: some reductions forbidden
 - unmodified F5: top-reduction of $S(f_1, f_4)$ stops with polynomial whose signature is x^2zf_1

Note: in \mathbb{Z}_{11} , does not appear to terminate!

Stegers, pg. 41

- lacksquare compute reduced GB R_{prev} after each increment
- lacktriangle reduce, top-reduce wrt R_{prev} , not wrt G_{prev}
 - safe: smaller signatures in R_{prev}
- do not replace G_{prev} w/ R_{prev}
 - "signature corruption"

Stegers, pg. 41

- lacksquare compute reduced GB R_{prev} after each increment
- lacktriangle reduce, top-reduce wrt R_{prev} , not wrt G_{prev}
 - safe: smaller signatures in R_{prev}
- do not replace G_{prev} w/ R_{prev}
 - "signature corruption"

Yes, but...

١

Other optimizations

Can replace
$$G_{\text{prev}}$$
 with $R_{\text{prev}} = (g_1, g_3, ..., g_M)$

- create appropriate signatures
 - compute basis for $(g_1, g_2, g_3, ..., g_M, f_m)$
 - signatures $1g_1, 1g_2, ..., 1g_{M+1}$ $(g_{M+1} = f_m)$
 - also basis for $(f_1, f_2, ..., f_m)$!
 - no more signature corruption!
- create appropriate rules

signatures for zero polynomial

Can replace
$$G_{\text{prev}}$$
 with $R_{\text{prev}} = (g_1, g_3, \dots, g_M)$

- create appropriate signatures
 - compute basis for $(g_1, g_2, g_3, ..., g_M, f_m)$
 - signatures $1g_1, 1g_2, ..., 1g_{M+1}$ $(g_{M+1} = f_m)$
 - also basis for $(f_1, f_2, ..., f_m)$!
 - no more signature corruption!
- create appropriate rules

signatures for zero polynomial

much more efficient than published F5

Can replace
$$G_{\text{prev}}$$
 with $R_{\text{prev}} = (g_1, g_3, ..., g_M)$

- create appropriate signatures
 - compute basis for $(g_1, g_2, g_3, ..., g_M, f_m)$
 - signatures $1g_1, 1g_2, ..., 1g_{M+1}$ $(g_{M+1} = f_m)$
 - also basis for $(f_1, f_2, ..., f_m)$!
 - no more signature corruption!
- create appropriate rules

signatures for zero polynomial

"A new, *more* efficient algorithm for computing Gröbner bases *with* reduction to zero"?

Some example systems

system	basic	reduce w/R_{prev}	compute w/R_{prev}
f633	161.85	160.86	132.24
Katsura6	13.242	12.78	8.74
Katsura7	111.03	97.1	54.3
Cyclic-6	161.35	159.5	118.74

(time in seconds, using Singular timer)

Interpreted Gebauer-Möller algorithm typically slower.

- \mathbb{Z}_2 : $f^2 = f$ (Bardet, Faugère, Salvy 2003)
- general: syzygies that lower signature?

- algorithm better understood (we hope)
 - termination? unresolved
- new, open-source implementations in interpreted languages
 - slow, okay, yes
 - compilation, linear algebra? w significant speedup
- optimization: possibilities

- Christian Eder (joint work)
- Jean-Charles Faugère
- Александр Семёнов
- Till Stegers
- Алексей Зобнин
- Technische Universität Kaiserslautern