
Algorithm 1 F5C

1: globals r, Rule, <T

2: inputs

3: F = (f1, f2, . . . , fm) ∈ Rm (homogeneous)
4: <, an admissible ordering
5: outputs

6: a Gröbner basis of F with respect to <
7: do

8: <T :=<
9: Sort F by increasing total degree, breaking ties by increasing leading mono-

mial
� Initialize the record keeping.

10: Rule := List (List ())
11: r := List ()
12: Append

(
F1, f1 · lc (f1)

−1
)
to r

� Compute the basis of 〈f1〉.
13: Gprev = {1}
14: B = {f1}

� Compute the bases of 〈f1, f2〉, . . . , 〈f1, f2, . . . , fm〉.
15: i := 2
16: while i ≤ m
17: Append

(
F#r+1, fi · lc (fi)

−1
)
to r

18: Gcurr := Incremental_Basis (F5) (#r, B,Gprev)
19: if ∃λ ∈ Gcurr such that Poly (λ) = 1
20: return {1}

� The only changes from F5 are incorporated here
21: Gprev := Setup_Reduced_Basis (Gcurr)
22: B := {Poly (λ) : λ ∈ Gprev}
23: i := i+ 1
24: return B

1



2

Algorithm 2 Setup_Reduced_Basis

1: globals r, Rule
(modi�es r and Rule)

2: inputs

3: Gprev, a list of indices of polynomials in r that correspond to a Gröbner basis
of (f1, . . . , fi)

4: outputs

5: Gcurr ⊂ N, indices of polynomials in r that correspond to a reduced Gröbner
basis of (f1, . . . , fi)

6: do

7: Let B be the reduced Gröbner basis of {Poly (k) : k ∈ Gi}
8: Gcurr := {j}#B

j=1

9: r := List
(
{(Fj , Bj)}#B

j=1

)
� All the S-polynomials of B reduce to zero; document this

10: Rule = List
(
{List ()}#B

j=1

)
11: for j := 1 to #B
12: t := lt (Bj)
13: for k := j + 1 to#B
14: u := lcm (t, lt (Bk)) /lt (Bk)
15: Add_Rule (uFk, 0)
16: return Gcurr


